\(\sqrt{3+x}+\sqrt{6-x}-\sqrt{\left(3+x\right)\le...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 9 2022

a/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow x+1-\sqrt{2x+2}+\sqrt{2x-1}-1=0\)

\(\Leftrightarrow\frac{x^2+2x+1-2x-2}{x+1+\sqrt{2x+2}}+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{x+1+\sqrt{2x+2}}+\frac{2}{\sqrt{2x-1}+1}\right)=0\)

\(\Rightarrow x=1\)

2/ ĐKXĐ:\(\left[{}\begin{matrix}x=0\\x\ge2\\x\le-3\end{matrix}\right.\)

- Nhận thấy \(x=0\) là 1 nghiệm

- Với \(x\ge2\):

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x-2}=2\sqrt{x+3}=\sqrt{4x+12}\)

Ta có \(VT\le\sqrt{2\left(x-1+x-2\right)}=\sqrt{4x-6}< \sqrt{4x+12}\)

\(\Rightarrow VT< VP\Rightarrow\) pt vô nghiệm

- Với \(x\le-3\)

\(\Leftrightarrow\sqrt{1-x}+\sqrt{2-x}=2\sqrt{-x-3}\)

\(\Leftrightarrow3-2x+2\sqrt{x^2-3x+2}=-4x-12\)

\(\Leftrightarrow2\sqrt{x^2-3x+2}=-2x-15\) (\(x\le-\frac{15}{2}\))

\(\Leftrightarrow4x^2-12x+8=4x^2+60x+225\)

\(\Rightarrow x=-\frac{217}{72}\left(l\right)\)

Vậy pt có nghiệm duy nhất \(x=0\)

NV
17 tháng 9 2022

Bài 3: ĐKXĐ: \(-3\le x\le6\)

Đặt \(\sqrt{3+x}+\sqrt{6-x}=t\) \(\Rightarrow3\le t\le3\sqrt{2}\)

\(t^2=9+2\sqrt{\left(3+x\right)\left(6-x\right)}\Rightarrow-\sqrt{\left(3+x\right)\left(6-x\right)}=\frac{9-t^2}{2}\)

Phương trình trở thành:

\(t+\frac{9-t^2}{2}=m\Leftrightarrow-t^2+2t+9=2m\) (2)

a/ Với \(m=3\Rightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=3\end{matrix}\right.\)

\(\Rightarrow\sqrt{3+x}+\sqrt{6-x}=3\)

\(\Leftrightarrow2\sqrt{\left(3+x\right)\left(6-x\right)}=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)

b/ Xét hàm \(f\left(t\right)=-t^2+2t+9\) trên \(\left[3;3\sqrt{2}\right]\)

\(-\frac{b}{2a}=1< 3\Rightarrow\) hàm số nghịch biến trên \(\left[3;3\sqrt{2}\right]\)

\(f\left(3\right)=6\) ; \(f\left(3\sqrt{2}\right)=6\sqrt{2}-9\)

\(\Rightarrow6\sqrt{2}-9\le2m\le6\Rightarrow\frac{6\sqrt{2}-9}{2}\le m\le3\)

Bài 4 làm tương tự bài 3

NV
14 tháng 6 2020

Đặt \(\sqrt{3+x}+\sqrt{6-x}=t\Rightarrow3\le t\le3\sqrt{2}\)

\(t^2=9+2\sqrt{\left(3+x\right)\left(6-x\right)}\Rightarrow\sqrt{\left(3+x\right)\left(6-x\right)}=\frac{t^2-9}{2}\)

BPT trở thành:

\(t-\frac{t^2-9}{2}\le m\) ; \(\forall t\in\left[3;3\sqrt{2}\right]\)

\(\Leftrightarrow f\left(t\right)=-\frac{1}{2}t^2+t+\frac{9}{2}\le m\) ; \(\forall t\in\left[3;3\sqrt{2}\right]\)

\(\Leftrightarrow m\ge\max\limits_{\left[3;3\sqrt{2}\right]}f\left(t\right)\)

\(-\frac{b}{2a}=1\notin\left[3;3\sqrt{2}\right]\) ; \(f\left(3\right)=3\) ; \(f\left(3\sqrt{2}\right)=\frac{6\sqrt{2}-9}{2}< 3\)

\(\Rightarrow\max\limits_{\left[3;3\sqrt{2}\right]}f\left(t\right)=3\Rightarrow m\ge3\)

28 tháng 8 2021

hello

26 tháng 1 2018

Bài 1 :

Đặt f(x) = \(\sqrt{x}-\sqrt{x-1}\) tập xác định [1;+)

Dễ thấy f(x) > 0

f(x) = \(\left(\sqrt{x}-1\right)-\sqrt{x-1}+1=\dfrac{x-1}{\sqrt{x}+1}-\sqrt{x-1}+1\)

= \(\sqrt{x-1}\left(\dfrac{\sqrt{x-1}}{\sqrt{x+1}}-1\right)+1\le\sqrt{x-1}\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)+1=\dfrac{-\sqrt{x-1}}{\sqrt{x+1}}+1\le1\)

Và f(1) = 1

Vậy f(x) có tập giá trị là (0;1]

* Nếu m \(\ge1\) thì bpt vô nghiệm

* Nếu m < 1 thì bpt có nghiệm

Vậy tập hợp m thỏa mãn là (0;1)

(0;1)

7 tháng 2 2018

ei ~ atr ăn cắp ảnh nka , chưa xin phép eg , atr lấy ảnh eg từ khi nào vậy , khai mau

12 tháng 12 2020

Đặt \(\sqrt{x+2}+\sqrt{6-x}=t\left(2\sqrt{2}\le t\le4\right)\)

\(\Rightarrow\sqrt{\left(x+2\right)\left(6-x\right)}=\dfrac{t^2-8}{2}\)

Khi đó phương trình tương đương:

\(2m=f\left(t\right)=t^2+2t-8\)

Yêu cầu bài toán thỏa mãn khi \(minf\left(t\right)\le2m\le maxf\left(t\right)\)

\(\Leftrightarrow f\left(2\sqrt{2}\right)\le2m\le f\left(4\right)\)

\(\Leftrightarrow4\sqrt{2}\le2m\le16\Rightarrow2\sqrt{2}\le m\le8\)

AH
Akai Haruma
Giáo viên
13 tháng 10 2018

Lời giải:

a) Đặt \(x^3=a\) thì pt trở thành:

\(a^2+2003a-2005=0\)

\(\Leftrightarrow (a+\frac{2003}{2})^2=2005+\frac{2003^2}{2^2}=\frac{4020029}{4}\)

\(\Rightarrow \left[\begin{matrix} a+\frac{2003}{2}=\sqrt{\frac{4020029}{4}}\\ a+\frac{2003}{2}=-\sqrt{\frac{4020029}{4}}\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} a=\sqrt{\frac{4020029}{4}}-\frac{2003}{2}\approx 1\\ a=-\sqrt{\frac{4020029}{4}}-\frac{2003}{2}\approx -2004\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=\sqrt[3]{a}\approx 1\\ x=\sqrt[3]{a}\approx \sqrt[3]{-2004}\end{matrix}\right.\)

b)

Đặt \(x^2=a(a\geq 0)\)

PT trở thành: \(\sqrt{2}a^2-2(\sqrt{2}+\sqrt{3})a+\sqrt{12}=0\)

\(\Delta'=(\sqrt{2}+\sqrt{3})^2-\sqrt{2}.\sqrt{12}=5\)

Theo công thức nghiệm của pt bậc 2 thì pt có 2 nghiệm:

\(\left\{\begin{matrix} a_1=\frac{(\sqrt{2}+\sqrt{3})+\sqrt{5}}{\sqrt{2}}\\ a_2=\frac{(\sqrt{2}+\sqrt{3})-\sqrt{5}}{\sqrt{2}}\end{matrix}\right.\)

Do đó \(x=\pm \sqrt{a}\in\left\{\pm \sqrt{\frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{\sqrt{2}}};\pm \sqrt{\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\sqrt{2}}}\right\}\)

AH
Akai Haruma
Giáo viên
13 tháng 10 2018

Câu 2:

Đặt \(x^2=a\). PT ban đầu trở thành:

\(a^2+a+m=0(*)\)

\(\bullet \)Để pt ban đầu có 3 nghiệm pb thì $(*)$ phải có một nghiệm $a=0$ và một nghiệm $a>0$

Để $a=0$ là nghiệm của $(*)$ thì \(0^2+0+m=0\Leftrightarrow m=0\)

Khi đó: \((*)\Leftrightarrow a^2+a=0\). Ta thấy nghiệm còn lại là $a=-1< 0$ (vô lý)

Do đó không tồn tại $m$ để pt ban đầu có 3 nghiệm pb.

\(\bullet\) Để pt ban đầu có 4 nghiệm pb thì $(*)$ phải có 2 nghiệm dương phân biệt

Mà theo định lý Viete, nếu $(*)$ có 2 nghiệm pb $a_1,a_2$ thì:\(a_1+a_2=-1< 0\) nên 2 nghiệm không thể đồng thời cùng dương.

Vậy không tồn tại $m$ để pt ban đầu có 4 nghiệm phân biệt.