Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm ngắn gọn thôi nhé :v
\(A=\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)
\(A=\frac{x^5-3x^4-3x^3+11x^2-6x}{x^5-8x^2+22x^2-24x+9}\)
\(A=\frac{x^4-3x^3-3x^2+11x-6}{x^4-8x^3+22x^2-24x+9}\)
\(A=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x-3\right)}{\left(x-1\right)\left(x-1\right)\left(x-3\right)\left(x-3\right)}\)
\(A=\frac{x+2}{x-3}\)
\(B=\frac{x}{x+2}+\frac{2}{x-2}-\frac{4x}{4-x^2}\)
\(B=\frac{-x^4-4x^3+16x+16}{-x^4+8x^2-16}\)
\(B=\frac{\left(-x-2\right)\left(x+2\right)\left(x+2\right)\left(x-2\right)}{\left(-x-2\right)\left(x-2\right)\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{x+2}{x-2}\)
\(C=\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x\left(1-x\right)}{9-x^2}\)
\(C=\frac{1+x}{3-x}-\left(\frac{1-2x}{3+x}\right)-\frac{x\left(1-x\right)}{9-x^2}\)
\(C=\frac{10x}{-x^2+9}\)
\(D=\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)
\(D=\frac{5}{2x^2+6x}-\left(\frac{4-3x^2}{x^2-9}\right)-3\)
\(D=\frac{51x^2+138x-45}{2x^4+6x^2-18x^2-54x}\)
\(D=\frac{3\left(17x-5\right)\left(x+3\right)}{2x\left(x+3\right)\left(x+3\right)\left(x-2\right)}\)
\(D=\frac{51x-15}{2x^3-18x}\)
\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)
\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\left(\frac{3x-2}{x^2+2x+1}\right)\)
\(E=\frac{10x^4-10}{x^6-3x^4+3x^2-1}\)
\(E=\frac{10\left(x^2+1\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x+1\right)\left(x+1\right)\left(x-1\right)\left(x-1\right)\left(x-1\right)}\)
\(E=\frac{10x^2+10}{x^4-2x+1}\)
a) Để \(\frac{2x+3}{4x-5}=0\)
=> 2x + 3 = 0
x = -3/2
b) Để \(\frac{\left(x-1\right)\left(x+2\right)}{x^2-4x+3}=\frac{\left(x-1\right).\left(x+2\right)}{\left(x-3\right).\left(x-1\right)}=\frac{x+2}{x-3}=0\)
=> x + 2 = 0=> x = -2
c) để \(\frac{x^2-1}{x^2-2x+1}=\frac{\left(x-1\right).\left(x+2\right)}{\left(x-1\right)^2}=\frac{x+2}{x-1}=0\)
=> x + 2 = 0 => x = -2
d) để \(\frac{x^2-4}{x^2+3x-10}=\frac{\left(x+2\right).\left(x-2\right)}{\left(x-2\right).\left(x+5\right)}=\frac{x+2}{x+5}=0\)
=> ...
e) để \(\frac{x^3-16x}{x^3-3x^2-4x}=\frac{x.\left(x-4\right).\left(x+4\right)}{x.\left(x-4\right).\left(x+1\right)}=\frac{x+4}{x+1}=0\)
=> ....
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
Gợi ý thôi nhé
a: x^2 - 5x + 8 = x^2 - 3x - 2x + 6 + 2 = (x-3).(x-2) + 2
=> Phân thức sẽ nguyên khi 2/(x-3) nguyên (Do x-3 nguyên bởi x nguyên)
<=> x-3 thuộc Ư(2) do x nguyên
Các câu khác thì cứ làm sao cho nó thành đa thức như thế
a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)
\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)
b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)
\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)
\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)
c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)
\(=-\left(x-1\right)^2-1\le-1\)
\(\Rightarrow V\ge\frac{1}{-1}=-1\)
Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)
\(=-\left(4x^2-8x+4\right)-1\)
\(=-\left(2x-2\right)^2-1\le-1\)
\(\Rightarrow X\ge\frac{2}{-1}=-2\)
Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
Mình là 1 câu mẫu, các câu kia tương tự nhé bạn !
a) \(Q=\frac{3x^2-x+3}{3x+2}=\frac{3x^2+2x-3x-2+5}{3x+2}=\frac{\left(3x+2\right)\left(x-1\right)+5}{3x+2}=x-1+\frac{5}{3x+2}\)
Để \(Q\) nhận giá trị nguyên thì \(5⋮3x+2\)
\(\Leftrightarrow3x+2\inƯ\left(5\right)=\left\{1,-1,5,-5\right\}\) ( Do \(x\in Z\) )
\(\Leftrightarrow x\in\left\{-\frac{1}{3};-1;1;-\frac{7}{3}\right\}\)
Mà \(x\in Z\) nên \(\Leftrightarrow x\in\left\{-1;1\right\}\)
Vậy \(\Leftrightarrow x\in\left\{-1;1\right\}\)
P/s : Phương pháp làm các bài dạng này :
- Phân tích tử để tử chứa nhân tử giống dưới mẫu, khi đó phần còn thừa lại sẽ có dạng \(\frac{a}{ax+b}\) ( với a trên tử có thể là dạng số, dạng biến dưới mẫu )
- Rồi làm tiếp bằng cách để biểu thức đó nguyên thì tử phải chia hết chia hết cho mẫu.
Chúc bạn học tốt nhé !