K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

a) Để \(\frac{2x+3}{4x-5}=0\)

=> 2x + 3 = 0

x = -3/2

b) Để \(\frac{\left(x-1\right)\left(x+2\right)}{x^2-4x+3}=\frac{\left(x-1\right).\left(x+2\right)}{\left(x-3\right).\left(x-1\right)}=\frac{x+2}{x-3}=0\)

=> x + 2 = 0=> x = -2

c) để \(\frac{x^2-1}{x^2-2x+1}=\frac{\left(x-1\right).\left(x+2\right)}{\left(x-1\right)^2}=\frac{x+2}{x-1}=0\)

=> x + 2 = 0 => x = -2 

d) để \(\frac{x^2-4}{x^2+3x-10}=\frac{\left(x+2\right).\left(x-2\right)}{\left(x-2\right).\left(x+5\right)}=\frac{x+2}{x+5}=0\)

=> ...

e) để \(\frac{x^3-16x}{x^3-3x^2-4x}=\frac{x.\left(x-4\right).\left(x+4\right)}{x.\left(x-4\right).\left(x+1\right)}=\frac{x+4}{x+1}=0\)

=> ....

23 tháng 11 2018

\(a)\frac{2x-1}{5x-10}\)    \(\text{Đ}K:x\ne2\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\frac{1}{2}(TM)\)

\(b)\frac{x^2-x}{2x}\)    \(\text{Đ}K:x\ne0\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow x.(x-1)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0(lo\text{ại})\\x=1(TM)\end{cases}}\)

\(c)\frac{2x+3}{4x-5}\)      \(\text{Đ}K:x\ne\frac{5}{4}\)

\(\Leftrightarrow2x+3=0\)

\(\Leftrightarrow x=\frac{-3}{2}(TM)\)

\(d)\frac{(x-1).(x+2)}{(x-3).(x-1)}\)    \(\text{Đ}K:\hept{\begin{cases}x\ne3\\x\ne1\end{cases}}\)

\(\Leftrightarrow(x-1).(x+2)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1(l\text{oại})\\x=-2(TM)\end{cases}}\)

gửi cho 4 câu trc

23 tháng 11 2018

dài vl

21 tháng 7 2017

thôi mk tl dc rùi

22 tháng 3 2020

a)Đkxđ x≠\(\frac{5}{4}\)

Ta có để \(\frac{2x+3}{4x-5}\)=0=>2x+3=0=>x=\(\frac{3}{2}\)(thỏa mãn)

b)Ta có \(x^2-4x+3=x^2-3x-x+3\)

=x(x-3)-(x-3)

=(x-1)(x-3)

=>Đkxđ x≠1,3

để bài b)=0 duy ra (x-1)(x-2)=0

=>x=1,x=2 đối chiếu đkxđ có x=2 (t/mãn)

c)phân thức tương đương:\(\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}\)

= \(\frac{x+1}{x-1}\)

=>Đkxđ x≠1

Để x+1/x-1=0=>x+1=0

=>x=-1(t/mãn)

22 tháng 3 2020

d) phân thức tương đương

\(\frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+5\right)}\)

=\(\frac{x+2}{x+5}\)=>x≠-5

để phân thức đạt 0 suy ra x+2=0

=>x=-2

e)phân thức tương đương

\(\frac{x\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)\left(x+1\right)}\)

=\(\frac{x+4}{x+1}\)

Đkxđ x khác -1

Để phân thức đạt GT là 0 x+4=0=>x=-4

g)\(\frac{\left(x-1\right)\left(x+1\right)^2}{\left(x-1\right)\left(x^2+x+3\right)}\)

=\(\frac{\left(x+1\right)^2}{x^2+x+3}\)

\(x^2+x+3>0\)(Dễ dàng chứng minh)

=>xϵR

Để phân thức đạt gt là 0 => \(\left(x+1\right)^2=0=>x=-1\)

14 tháng 2 2020

Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\) 

 \(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)

\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\) 

 \(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)

\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\) 

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)

14 tháng 3 2020

a) \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)

<=> 1 - x + 3(x + 1) = 2x + 3

<=> 1 - x + 3x + 3 = 2x + 3

<=> 1 - x + 3x + 3 - 2x = 3

<=> 4 = 3 (vô lý)

=> pt vô nghiệm

b) ĐKXĐ: \(x\ne1;x\ne2\)

\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)

<=> (x - 2)(2 - x) - 5(x + 1)(2 - x) = 15(x - 2)

<=> 2x - x2 - 4 + 2x - 5x - 5x2 + 10 = 15x - 30

<=> -x + 4x2 - 14 = 15x - 30

<=> x - 4x2 + 14 = 15x - 30 

<=> x - 4x2 + 14 + 15x - 30 = 0

<=> 16x - 4x2 - 16 = 0

<=> 4(4x - x2 - 4) = 0

<=> -x2 + 4x - 4 = 0

<=> x2 - 4x + 4 = 0

<=> (x - 2)2 = 0

<=> x - 2 = 0

<=> x = 2 (ktm)

=> pt vô nghiệm 

c) xem bài 4 ở đây: Câu hỏi của gjfkm

d) ĐKXĐ: \(x\ne1;x\ne2;x\ne3\)

\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)

<=> \(\frac{x+4}{\left(x-1\right)\left(x-2\right)}+\frac{x+1}{\left(x-1\right)\left(x-3\right)}=\frac{2x+5}{\left(x-1\right)\left(x-3\right)}\)

<=> (x + 4)(x - 3) + (x + 1)(x - 2) = (2x + 5)(x - 2)

<=> x2 - 3x + 4x - 12 + x2 - 2x + x - 2 = 2x2 - 4x + 5x - 10

<=> 2x2 - 14 = 2x2 + x - 10

<=> 2x2 - 14 - 2x2 = x - 10

<=> -14 = x - 10

<=> -14 + 10 = x

<=> -4 = x

<=> x = -4

29 tháng 11 2019

Làm ngắn gọn thôi nhé :v

\(A=\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)

\(A=\frac{x^5-3x^4-3x^3+11x^2-6x}{x^5-8x^2+22x^2-24x+9}\)

\(A=\frac{x^4-3x^3-3x^2+11x-6}{x^4-8x^3+22x^2-24x+9}\)

\(A=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x-3\right)}{\left(x-1\right)\left(x-1\right)\left(x-3\right)\left(x-3\right)}\)

\(A=\frac{x+2}{x-3}\)

\(B=\frac{x}{x+2}+\frac{2}{x-2}-\frac{4x}{4-x^2}\)

\(B=\frac{-x^4-4x^3+16x+16}{-x^4+8x^2-16}\)

\(B=\frac{\left(-x-2\right)\left(x+2\right)\left(x+2\right)\left(x-2\right)}{\left(-x-2\right)\left(x-2\right)\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{x+2}{x-2}\)

\(C=\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x\left(1-x\right)}{9-x^2}\)

\(C=\frac{1+x}{3-x}-\left(\frac{1-2x}{3+x}\right)-\frac{x\left(1-x\right)}{9-x^2}\)

\(C=\frac{10x}{-x^2+9}\)

\(D=\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)

\(D=\frac{5}{2x^2+6x}-\left(\frac{4-3x^2}{x^2-9}\right)-3\)

\(D=\frac{51x^2+138x-45}{2x^4+6x^2-18x^2-54x}\)

\(D=\frac{3\left(17x-5\right)\left(x+3\right)}{2x\left(x+3\right)\left(x+3\right)\left(x-2\right)}\)

\(D=\frac{51x-15}{2x^3-18x}\)

\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)

\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\left(\frac{3x-2}{x^2+2x+1}\right)\)

\(E=\frac{10x^4-10}{x^6-3x^4+3x^2-1}\)

\(E=\frac{10\left(x^2+1\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x+1\right)\left(x+1\right)\left(x-1\right)\left(x-1\right)\left(x-1\right)}\)

\(E=\frac{10x^2+10}{x^4-2x+1}\)

2 tháng 12 2019

a) \(\frac{x^2-16}{4x-x^2}=\frac{\left(x+4\right)\left(x-4\right)}{x\left(4-x\right)}\)

\(=\frac{\left(x+4\right)\left(x-4\right)}{-x\left(x-4\right)}=\frac{x+4}{-x}\)

b) \(\frac{x^2+4x+3}{2x+6}=\frac{x^2+3x+x+3}{2\left(x+3\right)}\)

\(=\frac{x\left(x+3\right)+\left(x+3\right)}{2\left(x+3\right)}\)

\(=\frac{\left(x+1\right)\left(x+3\right)}{2\left(x+3\right)}=\frac{x+1}{2}\)

c) \(\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)

\(=\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x^2-4\right)\left(x+1\right)}\)

\(=\frac{2x\left(x-2\right)^2}{x\left(x+2\right)\left(x-2\right)}\)

\(=\frac{2x\left(x-2\right)}{x\left(x+2\right)}\)

\(=\frac{2x^2-4x}{x^2+2x}\)

d) \(\frac{x^3-x^2y+xy^2}{x^3+y^3}\)

\(=\frac{x\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\frac{x}{x+y}\)