K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 8 2021

Đặt \(\left\{{}\begin{matrix}\sqrt{a-1}=x\\\sqrt{b-1}=y\\\sqrt{c-1}=z\end{matrix}\right.\) thì BĐT cần chứng minh trở thành:

\(\sqrt{\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)+z^2+1}\ge x+y+z\)

\(\Leftrightarrow\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)+z^2+1\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow x^2y^2z^2+x^2y^2+y^2z^2+z^2x^2-2xy-2yz-2zx+z^2+2\ge0\)

\(\Leftrightarrow\left(x^2y^2z^2+z^2-2xyz^2\right)+\left(x^2z^2+y^2z^2+2xyz^2\right)-2z\left(x+y\right)+1+\left(x^2y^2-2xy+1\right)\ge0\)

\(\Leftrightarrow\left(xyz-z\right)^2+\left(xz+yz\right)^2-2\left(xz+yz\right)+1+\left(xy-1\right)^2\ge0\)

\(\Leftrightarrow\left(xyz-z\right)^2+\left(xz+yz-1\right)^2+\left(xy-1\right)^2\ge0\) (luôn đúng)

4 tháng 12 2019

\(\left(x+5\right)\sqrt{2x^2+1}=x^2+x+5\)

13 tháng 4 2016

  có nghĩa với x ∈ R sao cho 2x + 1 ≥ 0

 có nghĩa với  x ∈ R sao cho 3 – x ≥ 0

Vậy tập xác định của hàm số  là:

D = D1 ∩ D2, trong đó:

D= {x ∈ R/2x + 1 ≥ 0} = 

D= {x ∈ R/3 – x ≥ 0} = 

1 tháng 11 2017

\(\dfrac{12+y}{300+y}.100=10\)

\(\Leftrightarrow\dfrac{12+y}{300+y}=\dfrac{1}{10}\)

\(\Leftrightarrow10\left(12+y\right)=300+y\)

\(\Leftrightarrow120+10y=300+y\)

\(\Leftrightarrow120+10y-y=300\)

\(\Leftrightarrow120+9y=300\)

\(\Leftrightarrow9y=180\)

\(\Leftrightarrow y=20\)

Vậy y=20

1 tháng 11 2016

kho qua aleuleuok

3 tháng 11 2016

qua kho

 

1
13 tháng 4 2016

) Ta có   =  + 

Nếu coi hình bình hành ABCd có  =  =  và  =  =  thì   là độ dài đường chéo AC và  = AB; = BC.

Ta lại có: AC = AB + BC

Đẳng thức xảy ra khi điểm B nằm giữa hai điểm A, C.

Vậy   =  +  khi hai vectơ  cùng hướng.

b) Tương tự,  là độ dài đường chéo AC

 là độ dài đường chéo BD

 = => AC = BD.

Hình bình hành ABCD có hai đường chéo bằng nhau nên nó là hình chữ nhật, ta có AD  AB hay   

0
           1.Khẳng định nào sau đây là đúng?A. Điểm đối xứng của A(–2; 1) qua gốc tọa độ O là (1; –2)B. Điểm đối xứng của A(–2; 1) qua trục tung là (2; 1)C. Điểm đối xứng của A(–2; 1) qua trục hoành là (–2; –1)D. Điểm đối xứng của A(–2; 1) qua đường phân giác của góc xOy là (1; –2)                                                                                2.Cho...
Đọc tiếp

           1.Khẳng định nào sau đây là đúng?

  • A. Điểm đối xứng của A(–2; 1) qua gốc tọa độ O là (1; –2)
  • B. Điểm đối xứng của A(–2; 1) qua trục tung là (2; 1)
  • C. Điểm đối xứng của A(–2; 1) qua trục hoành là (–2; –1)
  • D. Điểm đối xứng của A(–2; 1) qua đường phân giác của góc xOy là (1; –2)                                                                                2.Cho các điểm M(m; -2), N(1; 4), P(2; 3). Giá trị của m để M, N, P thẳng hành là:
  • A. m = – 7
  • B. m = – 5
  • C. m= D. m = 5                                                                                                                                                                                    3.Cho vectơ \underset{a}{\rightarrow}\underset{b}{\rightarrow} và các số thực m, n, k. Khẳng định nào sau đây là đúng?
  • A. Từ đẳng thức m\underset{a}{\rightarrow} = n\underset{a}{\rightarrow} suy ra m = n
  • B. Từ đẳng thức k\underset{a}{\rightarrow} = k\underset{b}{\rightarrow} luôn suy ra \underset{a}{\rightarrow} = \underset{b}{\rightarrow}
  • C. Từ đẳng thức k\underset{a}{\rightarrow} = k\underset{b}{\rightarrow} luôn suy ra k = 0
  • D. Từ đẳng thức m\underset{a}{\rightarrow} = n\underset{a}{\rightarrow} và \underset{a}{\rightarrow}0→ suy ra m = n
0