Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ne2\)
\(2x+\dfrac{3}{2x-4}< 3+\dfrac{3}{2x-4}\\ \Leftrightarrow\dfrac{2x.\left(2x-4\right)+3}{2x-4}< \dfrac{3\left(2x-4\right)+3}{2x-4}\\ \Leftrightarrow4x^2-8x+3-6x+12-3< 0\\ \Leftrightarrow4x^2-14x+12< 0\\ \Leftrightarrow\dfrac{3}{2}< x< 2\)
Ta có : \(\left(m^2-3m+2\right)x-m^2+m=0\)
\(\Leftrightarrow\left(m-1\right)\left(m-2\right)x=m\left(m-1\right)\)
Nếu \(m=1\) thì pt có dạng 0.x = 0 => pt có vô số nghiệm.
Nếu \(m=2\) thì pt có dạng 0.x = 2 => pt vô nghiệm.
Nếu \(m\ne1\) và \(m\ne2\) thì pt có nghiệm \(x=\frac{m}{m-2}\)
\(x.\left(-2\right)-9:\left(-3\right)=\left(2-7\right)^2\)
\(x.\left(-2\right)-\left(-3\right)=\left(-5\right)^2\)
\(x.\left(-2\right)-\left(-3\right)=25\)
\(x.\left(-2\right)=22\)
\(x=-11\)
TH1: 3x-2>7. ĐK:\(x\ge\frac{2}{3}\)
<=>x>3(thỏa)
TH2: 3x-2<7. Đk: x<2/3
<=>x<3. kh đk => x<2/3
kl:...
sáng sớm lang thang lật lại mấy trang gặp bài này, xin trình bày vài cách:
Đk:\(x\ge2\) \(\left(DK\forall PP\right)\)
C1 \(pt\Leftrightarrow x^3-3x\left(x+2\right)-2\sqrt{\left(x+2\right)^3}=0\)
Đặt \(t=\sqrt{x+2}\) ra pt đăng cấp bậc 3...
c2:\(pt\Leftrightarrow\left(\sqrt{\left(x+2\right)^3}+1\right)^2=\left(3\left(x+1\right)\right)^2\)
c3:\(pt\Leftrightarrow\left(\sqrt{\left(x+2\right)^3}-3x-2\right)\left(3x+\sqrt{\left(x+2\right)^3+4}\right)=0\)
C4:Chia 2 vế x3 dc:
\(1-\frac{3}{x}\pm2\sqrt{\left(\frac{1}{x}+\frac{2}{x^2}\right)}-\frac{6}{x^2}=0\)
đặt \(\sqrt{\left(\frac{1}{x}+\frac{2}{x^2}\right)}=t\) dc \(1\pm3t^2+2t^3=0\)
Ngoài ra còn có thể liên hợp ,.....
\(\dfrac{12+y}{300+y}.100=10\)
\(\Leftrightarrow\dfrac{12+y}{300+y}=\dfrac{1}{10}\)
\(\Leftrightarrow10\left(12+y\right)=300+y\)
\(\Leftrightarrow120+10y=300+y\)
\(\Leftrightarrow120+10y-y=300\)
\(\Leftrightarrow120+9y=300\)
\(\Leftrightarrow9y=180\)
\(\Leftrightarrow y=20\)
Vậy y=20