Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a,b là các số thực thoả mãn đẳng thức (1+a)(1+b)=9/4
Hãy tìm GTNN
P=\(\sqrt{1+a^4}+\sqrt{1+b^4}\)
Mincopxki: \(P=\sqrt{\left(a^2\right)^2+1^2}+\sqrt{\left(b^2\right)^2+1^2}\ge\sqrt{\left(a^2+b^2\right)^2+\left(1+1\right)^2}\)
Xét \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)
\(a+b=\left(a+1\right)+\left(b+1\right)-2\ge2\sqrt{\left(a+1\right)\left(b+1\right)}-2=2.\frac{3}{2}-2=1\)
Thế số vô nhé.
Đẳng thức xảy ra khi a=b=1/2
Ta đặt:
\(\left\{{}\begin{matrix}x=a-1\\y=b-2\\z=c-3\end{matrix}\right.\)
\(\Rightarrow x+y+z=3\) và \(x,y,z\ge0\) (*)
Biểu thứ P trở thành:
\(P=\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Từ (*) dễ thấy:
\(\left\{{}\begin{matrix}0\le x\le3\\0\le y\le3\\0\le z\le3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0\le x\le\sqrt{3x}\\0\le y\le\sqrt{3y}\\0\le z\le\sqrt{3z}\end{matrix}\right.\)
Do đó:
\(P\ge\dfrac{x+y+z}{\sqrt{3}}=\sqrt{3}\)
Dầu "=" xảy ra khi \(\left(a;b;c\right)=\left(3;0;0\right)=\left(0;3;0\right)=\left(0;0;3\right)\)
Ta có : \(\frac{9}{4}=\left(1+a\right)\left(1+b\right)\le\frac{1}{4}\left(a+b+2\right)^2\)
\(\Leftrightarrow\left(a+b+2\right)^2\ge9\Leftrightarrow a+b+2\ge3\Leftrightarrow a+b\ge1\)
Áp dụng BĐT Mincopxki , ta có : \(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\sqrt{\left(1^2+1^2\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\frac{1}{4}\left(a+b\right)^4}\ge\sqrt{\frac{17}{4}}\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
Vậy minP = \(\frac{\sqrt{17}}{2}\Leftrightarrow a=b=\frac{1}{2}\)
\(\left(1+a\right)\left(1+b\right)=\frac{9}{4}\)
\(\Leftrightarrow1+a+b+ab=\frac{9}{4}\Leftrightarrow a+b+ab=\frac{5}{4}\)
Áp dụng Bđt Cô si ta có: \(a^2+b^2\ge2ab\)
\(2\left(a^2+\frac{1}{4}\right)\ge2a;2\left(b^2+\frac{1}{4}\right)\ge2b\)
\(\Rightarrow3\left(a^2+b^2\right)+1\ge2\left(a+b+ab\right)=\frac{5}{2}\)
\(\Leftrightarrow a^2+b^2\ge\frac{1}{2}\)
Áp dụng Bđt Bunhiacopski ta cũng có:
\(P\ge\sqrt{\left(1+1\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\frac{1}{4}}=\frac{\sqrt{17}}{2}\)
Dấu = khi \(x=y=\frac{1}{2}\)
\(P=1\sqrt{a-1}+1\sqrt{b-2}+1\sqrt{c-3}\le\dfrac{1}{2}\left(1+a-1+1+b-2+1+c-3\right)=3\)
\(P_{max}=3\) khi \(\left(a;b;c\right)=\left(2;3;4\right)\)
\(P^2=a+b+c-6+2\left(\sqrt{\left(a-1\right)\left(b-2\right)}+\sqrt{\left(a-1\right)\left(c-3\right)}+\sqrt{\left(b-2\right)\left(c-3\right)}\right)\)
\(P^2\ge a+b+c-6=3\)
\(P\ge\sqrt{3}\)
\(P_{min}=\sqrt{3}\) khi \(\left(a;b;c\right)=\left(1;2;6\right);\left(1;5;3\right);\left(4;2;3\right)\)
thầy giải thích thêm phần dấu bằng xảy ra của phần tìm giá trị nhỏ nhất được không ạ
\(6a+3b+2c=abc\Leftrightarrow\dfrac{2}{ab}+\dfrac{3}{ac}+\dfrac{6}{bc}=1\)
Đặt \(\left(\dfrac{1}{a};\dfrac{2}{b};\dfrac{3}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)
\(Q=\dfrac{1}{\sqrt{\dfrac{1}{x^2}+1}}+\dfrac{2}{\sqrt{\dfrac{4}{y^2}+4}}+\dfrac{3}{\sqrt{\dfrac{9}{z^2}+9}}=\dfrac{x}{\sqrt{x^2+1}}+\dfrac{y}{\sqrt{y^2+1}}+\dfrac{z}{\sqrt{z^2+1}}\)
\(Q=\dfrac{x}{\sqrt{x^2+xy+yz+zx}}+\dfrac{y}{\sqrt{y^2+xy+yz+zx}}+\dfrac{z}{\sqrt{z^2+xy+yz+zx}}\)
\(Q=\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{y}{\sqrt{\left(x+y\right)\left(y+z\right)}}+\dfrac{z}{\sqrt{\left(x+z\right)\left(y+z\right)}}\)
\(Q\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)=\dfrac{3}{2}\)
\(Q_{max}=\dfrac{3}{2}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\) hay \(\left(a;b;c\right)=\left(\sqrt{3};2\sqrt{3};3\sqrt{3}\right)\)
Theo đề bài, ta có:
x3+y3=x2−xy+y2x3+y3=x2−xy+y2
hay (x2−xy+y2)(x+y−1)=0(x2−xy+y2)(x+y−1)=0
⇒\orbr{x2−xy+y2=0x+y=1⇒\orbr{x2−xy+y2=0x+y=1
+ Với x2−xy+y2=0⇒x=y=0⇒P=52x2−xy+y2=0⇒x=y=0⇒P=52
+ với x+y=1⇒0≤x,y≤1⇒P≤1+√12+√0+2+√11+√0=4x+y=1⇒0≤x,y≤1⇒P≤1+12+0+2+11+0=4
Dấu đẳng thức xảy ra <=> x=1;y=0 và P≥1+√02+√1+2+√01+√1=43P≥1+02+1+2+01+1=43
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3
Ta có : \(\left(1+a\right)\left(1+b\right)=\frac{9}{4}\)
\(\Leftrightarrow a+b+ab=\frac{5}{4}\)
Áp dụng BĐT Cô-si, ta có :
\(a^2+b^2\ge2ab\); \(2\left(a^2+\frac{1}{4}\right)\ge2a\); \(2\left(b^2+\frac{1}{4}\right)\ge2b\)
cộng 3 vế theo vế, ta được :
\(3\left(a^2+b^2\right)+1\ge2\left(a+b+ab\right)=\frac{5}{2}\)
\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)
Áp dụng BĐT Min-cốp-ski,ta có :
\(P=\sqrt{1+a^4}+\sqrt{1+b^4}=\sqrt{1^2+\left(a^2\right)^2}+\sqrt{1^2+\left(b^2\right)^2}\)
\(\ge\sqrt{\left(1+1\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\left(a^2+b^2\right)^2}\ge\frac{\sqrt{17}}{2}\)
Vậy GTNN của P là \(\frac{\sqrt{17}}{2}\) khi a = b = \(\frac{1}{2}\)
Bài gốc của nó đây Câu hỏi của Incursion_03 - Toán lớp 9 - Học toán với OnlineMath(ko hiện link thì vô tcn)
Anh Incursion đặt ẩn phụ là nguyên bài này (chuyen Hưng Yên)