Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)(1)
⇔\(a^2+2\left|ab\right|+b^2\ge a^2+2ab+b^2\)(vì 2 vế của (1) không âm )
⇔\(2\left|ab\right|\ge2ab\)
⇔\(\left|ab\right|\ge ab\) (luôn đúng )
=> đpcm
e)
\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)
=> ĐPCM
Lời giải:
Sửa lại đề. Cho $a+b\geq 0$. CMR \(\frac{a+b}{2}\leq \sqrt[3]{\frac{a^3+b^3}{2}}\)
Ta có:
\(a^3+b^3=(a+b)(a^2-ab+b^2)(1)\)
\(a^2-ab+b^2=(a+b)^2-3ab\)
\((a-b)^2\geq 0\Rightarrow a^2+b^2\geq 2ab\Rightarrow (a+b)^2\geq 4ab\Rightarrow \frac{3}{4}(a+b)^2\geq 3ab\)
\(\Rightarrow a^2-ab+b^2=(a+b)^2-3ab\geq (a+b)^2-\frac{3}{4}(a+b)^2=\frac{(a+b)^2}{4}(2)\)
Từ \((1);(2)\Rightarrow a^3+b^3\geq (a+b).\frac{(a+b)^2}{4}\)
\(\Rightarrow \frac{a^3+b^3}{2}\geq \frac{(a+b)^3}{8}\Rightarrow \sqrt[3]{\frac{a^3+b^3}{2}}\geq \frac{a+b}{2}\) (đpcm)
Dấu "=" xảy ra khi $a=b\geq 0$
*Chứng minh bất đẳng thức
Ta có: \(\forall a,b\ge0\) thì \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\) \(\Leftrightarrow a+b\ge2\sqrt{ab}\) \(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\) (đpcm)
Ta có: \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\forall a,b>0\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\forall a,b>0\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\forall a,b>0\)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\forall a,b>0\)(đpcm)
\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(a-b\right)^2\ge0\forall a,b\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a-1=0\\b-1=0\\a-b=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\\a=b\end{matrix}\right.\Rightarrow a=b=1\)
Ta có : \(\dfrac{a+b}{2}\ge\sqrt{ab}\) (tự cm)
Lại có : \(A=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}\)
Áp dụng BĐT trên ta có : : \(xy\le\left(\dfrac{x+y}{2}\right)^2\)
\(\Leftrightarrow A\ge\dfrac{x+y}{\left(\dfrac{x+y}{2}\right)^2}=\dfrac{1}{\dfrac{1}{2^2}}=4\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Vậy...
Có: A=\(\dfrac{1}{x}+\dfrac{1}{y}\) =\(\dfrac{x+y}{xy}\) =\(\dfrac{1}{xy}\) ( do x+y=1)
Áp dụng bđt \(\dfrac{a+b}{2}\ge\sqrt{ab}\) ,dâú bằng xảy ra khi a=b, ta có:
A=\(\dfrac{1}{x}+\dfrac{1}{y}\) =\(\dfrac{1}{xy}\) ≥ \(\dfrac{2}{x+y}\) =\(\dfrac{2}{1}\) =2 ( x+y=1)
dấu bằng xảy ra khi x=y=0,5.
c/m bđt \(\dfrac{a+b}{2}\ge\sqrt{ab}\) ⇔ a+b ≥ 2\(\sqrt{ab}\)
⇔(a+b)2 ≥ 4ab
⇔a2 +b2 +2ab≥ 4ab
⇔(a-b)2 ≥ 0 (luôn đúng)
dấu bằng xảy ra khi a=b.
\(\dfrac{a+b}{2}\ge\sqrt{ab}\left(\circledast\right)\\ \Leftrightarrow a+b\ge2\sqrt{ab}\\ \Leftrightarrow\left(a+b\right)^2\ge4ab\\ \Leftrightarrow a^2+2ab+b^2-4ab\ge0\\ \Leftrightarrow a^2-2ab+b^2=\left(a-b\right)^2\ge0\left(\text{luôn đúng}\right)\)
Vậy BĐT (*) được chứng minh.
\(A=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{1}{xy}\)
__________________________________
\(\dfrac{x+y}{2}\ge\sqrt{xy}\\ \Rightarrow\sqrt{xy}\le\dfrac{1}{2}\\ \Rightarrow xy\le\dfrac{1}{4}\\ \Rightarrow A=\dfrac{1}{xy}\ge\dfrac{1}{\dfrac{1}{4}}=4\)
Vậy GTNN của A = 4
Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
bất đẳng thức cô-si ?
\(\dfrac{a+b}{2}\ge\sqrt{ab}\\ < =>a+b\ge2\sqrt{ab}\\ < =>\left(a+b\right)^2\ge4ab\\ < =>a^2+2ab+b^2\ge4ab\\ < =>a^2-2ab+b^2\ge0\\ < =>\left(a-b\right)^2\ge0\left(đúng\right)\)
=> \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
chúc may mắn
Ta có: \(a\ge0;b\ge0\Rightarrow a+b\ge0\Leftrightarrow a^2+2ab+b^2\ge2ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge2ab\Leftrightarrow a+b\ge\sqrt{2}.\sqrt{ab}\)
\(\Leftrightarrow2.\dfrac{a+b}{2}\ge\sqrt{2}.\sqrt{ab}\); do \(2>\sqrt{2}\) nên \(\dfrac{a+b}{2}\ge\sqrt{ab}\)