K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

a.

Xét hiệu:

\(a^3+b^3-ab\left(a+b\right)=\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\)

\(=a^2-ab+b^2-ab=a^2-2ab+b^2\)

\(=\left(a-b\right)^2\ge0\)

=> BĐT luôn đúng

b.

Xét hiệu:

\(a^4+b^4-a^3b-ab^3=\left(a^4-a^3b\right)-\left(b^4-ab^3\right)\)

\(=a^3\left(a-b\right)-b^3\left(a-b\right)=\left(a^3-b^3\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)\left(a-b\right)\)

\(=\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

=> BĐT luôn đúng

31 tháng 3 2018

a)

\(a^3+b^3\ge ab\left(a+b\right)\forall a,b>0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)

\(\Rightarrow a^2-ab+b^2\ge ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

\(\Rightarrowđpcm\)

b)

\(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow a^4-ab^3+b^4-a^3b\ge0\)

\(\Leftrightarrow a\left(a^3-b^3\right)-b\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Rightarrowđpcm\)

c)

\(\left(a+1\right)\left(b+1\right)\ge\left(\sqrt{ab}+1\right)^2\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)-\left(\sqrt{ab}+1\right)^2\ge0\)

\(\Leftrightarrow1+b+a+ab-ab-2\sqrt{ab}-1\ge0\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

Dấu bằng xảy ra khi \(a=b\)

d)

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ac\)

Áp dụng bất đẳng thức AM-GM ta được

\(\dfrac{a^3}{b}+ab\ge2\sqrt{\dfrac{a^3}{b}.ab}\)

\(\Leftrightarrow\dfrac{a^3}{b}+ab\ge2a^2\)

Tương tự ta được

\(\dfrac{b^3}{c}+bc\ge2b^2,\dfrac{c^3}{a}+ac\ge2c^2\)

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ac\ge2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ac\right)\)

Mặt khác ta có:\(a^2+b^2+c^2\ge ab+bc+ac\) (hệ quả bất đẳng thức AM-GM)

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ac\left(đpcm\right)\)

Dấu bằng xảy ra khi \(x=y=z;x,y,z>0\)

21 tháng 10 2018

@Nguyễn Thanh Hằng đọc xong xóa đii nha

26 tháng 12 2017

\(A=\sum\sqrt{\dfrac{ab}{c+ab}}=\sum\sqrt{\dfrac{ab}{c^2+ca+cb+ab}}\)

\(=\sum\sqrt{\dfrac{ab}{\left(c+a\right)\left(c+b\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{c+a}+\dfrac{b}{c+b}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{b+a}+\dfrac{c}{b+c}\right)\)

\(=\dfrac{1}{2}.3=\dfrac{3}{2}\)

23 tháng 3 2018

Ta có:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}\ge\dfrac{9}{1+1+1+ab+bc+ca}\)(AM-GM)

Lại có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+a^2+b^2+c^2}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrowđpcm\)

24 tháng 3 2018

Cháu làm cho bác câu 2 thôi,câu 3 THANGDZ làm rồi sợ mất bản quyền lắm:v

Lời giải:

Áp dụng liên tiếp bất đẳng thức AM-GM và Cauchy-Schwarz ta có:

\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}\)

\(=\dfrac{a^2}{a^2+2ab+3ac}+\dfrac{b^2}{b^2+2bc+3ab}+\dfrac{c^2}{c^2+2ac+3bc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+5ab+5bc+5ac}\)

\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\left(a+b+c\right)^2}=\dfrac{1}{2}\)

7 tháng 6 2017

Giải:

Ta có:

\(\left(a+b+c+d\right)^2=\) \(\left[\left(a+c\right)+\left(b+d\right)\right]^2\)

\(\ge4\left(a+c\right)\left(b+d\right)\) \(=4\left(ab+bc+cd+da\right)\)\(=4\)

\(\Leftrightarrow a+b+c+d\) \(\ge2\left(a,b,c,d>0\right)\)

\(\Rightarrow\dfrac{a^3}{b+c+d}+\dfrac{b+c+d}{8}\) \(+\dfrac{b}{6}+\dfrac{1}{12}\ge\dfrac{2a}{3}\)

Tương tự ta cũng có:

\(\dfrac{b^3}{a+c+d}+\dfrac{a+c+d}{8}+\dfrac{b}{6}+\dfrac{1}{12}\) \(\ge\dfrac{2b}{3}\)

\(\dfrac{c^3}{a+b+d}+\dfrac{a+b+d}{8}+\dfrac{c}{6}+\dfrac{1}{12}\) \(\ge\dfrac{2c}{3}\)

\(\dfrac{d^3}{a+b+c}+\dfrac{a+b+c}{8}+\dfrac{d}{6}+\dfrac{1}{12}\) \(\ge\dfrac{2d}{3}\)

Cộng vế theo vế các BĐT trên ta có:

\(P\ge\dfrac{a+b+c+d}{3}-\dfrac{1}{3}\ge\) \(\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d=\dfrac{1}{2}\)

7 tháng 6 2017

undefined

28 tháng 3 2022

Ta có : \(a^2+ab=c^2+bc\Leftrightarrow a^2-c^2+b\left(a-c\right)=0\)

\(\Leftrightarrow\left(a-c\right)\left(a+b+c\right)=0\Leftrightarrow a-c=0\) ( do a;b;c \(\ne0\Rightarrow a+b+c\ne0\) )

\(\Leftrightarrow a=c\)

Làm tương tự ; ta có : a = b . Suy ra : a = b = c 

\(A=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=6\)

Vậy ... 

28 tháng 3 2022

Ta có : a2+ab=c2+bc⇔a2−c2+b(a−c)=0a2+ab=c2+bc⇔a2−c2+b(a−c)=0

⇔(a−c)(a+b+c)=0⇔a−c=0⇔(a−c)(a+b+c)=0⇔a−c=0 ( do a;b;c ≠0⇒a+b+c≠0≠0⇒a+b+c≠0 )

⇔a=c⇔a=c

Làm tương tự ; ta có : a = b . Suy ra : a = b = c 

A=(1+ab)(1+bc)(1+ca)=(1+1)(1+1)(1+1)=6A=(1+ab)(1+bc)(1+ca)=(1+1)(1+1)(1+1)=6

Vậy ...