Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
a) Ta có: \(-2xy^2\cdot\left(x^3y-2x^2y^2+5xy^3\right)\)
\(=-2x^4y^3+4x^3y^4-10x^2y^5\)
b) Ta có: \(\left(-2x\right)\cdot\left(x^3-3x^2-x+1\right)\)
\(=-2x^4+6x^3+2x^2-2x\)
c) Ta có: \(3x^2\left(2x^3-x+5\right)\)
\(=6x^5-3x^3+15x^2\)
d) Ta có: \(\left(-10x^3+\frac{2}{5}y-\frac{1}{3}z\right)\cdot\left(-\frac{1}{2}xy\right)\)
\(=5x^4y-\frac{1}{5}xy^2+\frac{1}{6}xyz\)
e) Ta có: \(\left(3x^2y-6xy+9x\right)\cdot\left(-\frac{4}{3}xy\right)\)
\(=-4x^3y^2+8x^2y^2-12x^2y\)
f) Ta có: \(\left(4xy+3y-5x\right)\cdot x^2y\)
\(=4x^3y^2+3x^2y^2-5x^3y\)
1, \(\left(xy\right)^2-\frac{1}{2}x^2y^2+3xy^2.\left(-\frac{1}{3}x\right)\)
\(=x^2y^2-\frac{1}{2}x^2y^2-x^2y^2\)
\(=-\frac{1}{2}x^2y^2\)
2, \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)
\(=x^2+\frac{3}{2}x^2+\frac{1}{3}x^2\)
\(=\frac{17}{6}x^2\)
3, \(-4.\left(2x\right)^2y^3+\frac{1}{2}xy.\left(-2xy^2\right)+\frac{1}{4}x^2y^3\)
\(=-16x^2y^3-x^2y^3+\frac{1}{4}x^2y^3\)
\(=-\frac{67}{4}x^2y^3\)
4, \(\frac{1}{3}x^4y-\frac{5}{3}x^3.\left(\frac{5}{2}xy\right)+\frac{3}{4}x^4y\)
\(=\frac{1}{3}x^4y-\frac{25}{6}x^4y+\frac{3}{5}x^4y\)
\(=-\frac{97}{30}x^4y\)
5, \(\left(-2x^3y^4\right)^2-5x^2y.\left(\frac{3}{4}x^4y^7\right)-\frac{2}{3}x^6y^8\)
\(=4x^6y^8-\frac{15}{4}x^6y^8-\frac{2}{3}x^6y^8\)
\(=-\frac{5}{12}x^6y^8\)
\(\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|=0\) \(0\)
<=> \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{3}{4}=0\\z-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{3}{4}\\z=1\end{cases}}\)
\(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=\frac{-7}{20}\end{cases}}\)
\(\left|x-\frac{2}{3}\right|+\left|x+y+\frac{3}{4}\right|+\left|y-z-\frac{5}{6}\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{2}{3}=0\\x+y+\frac{3}{4}=0\\y-z-\frac{5}{6}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{-17}{12}\\z=\frac{-9}{4}\end{cases}}\)
\(\left|x-\frac{1}{2}\right|+\left|xy-\frac{3}{4}\right|+\left|2x-3y-z\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\xy-\frac{3}{4}=0\\2x-3y-z=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}:\frac{1}{2}=\frac{3}{2}\\z=\frac{-7}{2}\end{cases}}\)
các câu còn lại tương tự
a)\(-\left(\frac{-1}{2}xy^2z\right)^2\left(4x^2yz^3\right)\)
\(=-\left(\frac{1}{4}x^2y^4z^2\right)\left(4x^2yz^3\right)\)
\(=\left(\frac{-1}{4}.4\right)\left(x^2x^2\right)\left(y^4y\right)\left(z^2z^3\right)\)
\(=-x^4y^5z^5\) \(\Rightarrow\)Bậc là 14 Hệ số là -1
b)\(\left(\frac{-1}{3}x^2yz^3\right).\left(\frac{-6}{7}xyz^2\right)\)
\(=\left(\frac{-1}{3}.\frac{-6}{7}\right)\left(x^2x\right)\left(yy\right)\left(z^3z^2\right)\)
\(=\frac{2}{7}x^3y^2z^5\) \(\Rightarrow\)Bậc là 10 Hệ số là \(\frac{2}{7}\)
c)\(-3x^2.y^4.\left(\frac{-1}{3}y^4z^5x\right).\left(\frac{-1}{2}zyx^3\right)\)
\(=\left(-3.\frac{-1}{3}.\frac{-1}{3}\right)\left(x^2xx^3\right)\left(y^4y^4y\right)\left(z^5z\right)\)
\(=\frac{-1}{3}x^6y^9z^6\) \(\Rightarrow\)Bậc là 21 Hệ số là \(\frac{-1}{3}\)
d)\(\frac{3}{4}xy^3\left(\frac{-2}{3}x^2y^4\right)^2\)
\(=\frac{3}{4}xy^3\left(\frac{4}{9}x^4y^{16}\right)\)
\(=\left(\frac{3}{4}\cdot\frac{4}{9}\right)\left(xx^4\right)\left(y^3y^{16}\right)\)
\(=\frac{1}{3}x^5y^{19}\)
b) 4x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}\)
Và x2 + y2 = 100
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
Ta có:
\(\frac{x^2}{9}=4\Rightarrow x^2=4.9=36\Rightarrow x=6;x=-6\)
\(\frac{y^2}{16}=4\Rightarrow y^2=16.9=144\Rightarrow x=12;x=-12\)
Vậy ta có các cặp số x, y sau:
x = 6; y = 12
hoặc x = 6; y = -12
hoặc x = -6; y = 12
hoặc x = -6; y = -12
d) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x^2}{2}=\frac{xy}{3}\)
Mà xy = 6
\(\Rightarrow\frac{x^2}{2}=\frac{xy}{3}=\frac{6}{3}=2\)
Ta có:
\(\frac{x^2}{2}=2\Rightarrow x^2=2.2=4\Rightarrow x=2;x=-2\)
Với x = 2, ta có:
\(\frac{2y}{3}=2\Rightarrow y=\frac{2.3}{2}=\frac{6}{2}=3\)
Với x = -2, ta có:
\(\frac{-2y}{3}=2\Rightarrow y=\frac{2.3}{-2}=\frac{-6}{2}=-3\)
Vậy có các cặp giá trị x, y sau:
x = 2; y = 3
Hoặc x = -2; y = -3
1.
\((\frac{1}{3}xy)^2.x^3+\frac{3}{2}(2x)^3(-\frac{7}{4}x^2y^2)-\frac{2}{3}x^5y^2\)
\(=(\frac{1}{9}x^2y^2)x^3+\frac{3}{2}(8x^3)(-\frac{7}{4}x^2y^2)-\frac{2}{3}x^5y^2\)
\(=\frac{1}{9}(x^2.x^3)y^2+(\frac{3}{2}.8.\frac{-7}{4})(x^3.x^2).y^2-\frac{2}{3}x^5y^2\)
\(=\frac{1}{9}x^5y^2-21x^5y^2-\frac{2}{3}x^5y^2=\frac{-194}{9}x^5y^2\)
2.
\(\frac{-2}{5}x^2y(-y^6)+\frac{3}{2}xy(\frac{-1}{15}xy^6)+(-2xy)^2y^5\)
\(=\frac{2}{5}x^2(y.y^6)+(\frac{3}{2}.\frac{-1}{15})(x.x).(y.y^6)+4x^2(y^2.y^5)\)
\(=\frac{2}{5}x^2y^7-\frac{1}{10}x^2y^7+4x^2y^7=\frac{43}{10}x^2y^7\)
3.
\(\frac{3}{7}xy^2z+\frac{1}{2}x^3y^2+\frac{1}{3}x^3y^2-\frac{3}{7}xy^2z\)
\(=(\frac{3}{7}xy^2z-\frac{3}{7}xy^2z)+(\frac{1}{2}x^3y^2+\frac{1}{3}x^3y^2)\)
\(=\frac{5}{6}x^3y^2\)
4.
\(\frac{2}{3}xy^2-\frac{5}{2}yz+\frac{1}{2}xy^2-\frac{2}{3}yz\)
\(=(\frac{2}{3}xy^2+\frac{1}{2}xy^2)-(\frac{5}{2}yz+\frac{2}{3}yz)\)
\(=\frac{7}{6}xy^2+\frac{19}{6}yz\)
5.
\(\frac{3}{2}xy^2z^5-\frac{5}{4}xyz^2+\frac{4}{3}xy^2z^5+\frac{1}{2}xyz^2\)
\(=(\frac{3}{2}xy^2z^5+\frac{4}{3}xy^2z^5)+(\frac{-5}{4}xyz^2+\frac{1}{2}xyz^2)\)
\(=\frac{17}{6}xy^2z^5-\frac{3}{4}xyz^2\)
1 Ta có x -24 = y
Suy ra x - y = 24
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/7 = y/3 = x-y/7-3 =24/4=6
suy ra x= 42
y = 18
_bạn lên trang wed những hàng đẳng thức đáng nhớ 7 ấy nhé
_xem xong á́p dungj công thức đó vào bãi nãyy nhé
good night