Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3 :
A = 7776 . 8 - 2.243. 64
A = 62208 - 31104
A = 31104
Câu 1 :
a) \(12^5=3^5.4^5\)
b) \(20^6=4^6.5^6\)
c) \(54^3=6^3.9^3\)
Câu 2 :
a) \(3.5^{55}=3.\left(5^5\right)^{11}\)
b) \(4.3^{816}=4.\left(3^{17}\right)^{48}\)
c) \(9.8.7^{6412}=9.8.\left(7^{28}\right)^{229}\)
1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9
2.
Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)
a: \(=\dfrac{3^3\cdot2^6}{3^{-4}\cdot2^6}=3^7\)
b: \(=\left(\dfrac{3}{7}\right)^5\cdot\left(\dfrac{3}{7}\right)\cdot\dfrac{5^6}{3^6}:\left(\dfrac{625}{343}\right)^2\)
\(=\dfrac{3^6}{7^6}\cdot\dfrac{5^6}{3^6}:\dfrac{5^8}{7^6}\)
\(=\dfrac{1}{5^2}\)
c: \(=5^{4+3}\cdot\left(\dfrac{5}{2}\right)^{-5}\cdot\dfrac{1}{25}\)
\(=5^5\cdot\left(\dfrac{2}{5}\right)^5=2^5\)
a) Ta có: \(-3\sqrt{16}\cdot\sqrt{90}\)
\(=-3\cdot4\cdot3\sqrt{10}\)
\(=-36\sqrt{10}\)
b) Ta có: \(3\sqrt{\dfrac{4}{3}}-3\sqrt{48}+5\sqrt{75}\)
\(=3\cdot\dfrac{2}{\sqrt{3}}-3\cdot4\sqrt{3}+5\cdot5\sqrt{3}\)
\(=2\sqrt{3}-12\sqrt{3}+25\sqrt{3}\)
\(=15\sqrt{3}\)
c) Ta có: \(4\sqrt[3]{27}-\sqrt[3]{64}-2\sqrt[3]{8}\)
\(=4\cdot3-4-2\cdot2\)
\(=12-4-4=4\)
Bài 6 . Áp dụng BĐT Cauchy , ta có :
a2 + b2 ≥ 2ab ( a > 0 ; b > 0)
⇔ ( a + b)2 ≥ 4ab
⇔ \(\dfrac{\left(a+b\right)^2}{4}\)≥ ab
⇔ \(\dfrac{a+b}{4}\) ≥ \(\dfrac{ab}{a+b}\) ( 1 )
CMTT , ta cũng được : \(\dfrac{b+c}{4}\) ≥ \(\dfrac{bc}{b+c}\) ( 2) ; \(\dfrac{a+c}{4}\) ≥ \(\dfrac{ac}{a+c}\)( 3)
Cộng từng vế của ( 1 ; 2 ; 3 ) , Ta có :
\(\dfrac{a+b}{4}\) + \(\dfrac{b+c}{4}\) + \(\dfrac{a+c}{4}\) ≥ \(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)
⇔ \(\dfrac{a+b+c}{2}\) ≥ \(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)
Bài 4.
Áp dụng BĐT Cauchy cho các số dương a , b, c , ta có :
\(1+\dfrac{a}{b}\) ≥ \(2\sqrt{\dfrac{a}{b}}\) ( a > 0 ; b > 0) ( 1)
\(1+\dfrac{b}{c}\) ≥ \(2\sqrt{\dfrac{b}{c}}\) ( b > 0 ; c > 0) ( 2)
\(1+\dfrac{c}{a}\) ≥ \(2\sqrt{\dfrac{c}{a}}\) ( a > 0 ; c > 0) ( 3)
Nhân từng vế của ( 1 ; 2 ; 3) , ta được :
\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\) ≥ \(8\sqrt{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=8\)
áp dụng bất đẳng thức:\(\frac{1}{a}\)+\(\frac{1}{b}\)=>\(\frac{4}{a+b}\)(áp dụng 2 cái đầu trc,rồi lấy KQ đó áp dụng típ vào cái thứ 3,rồi cái cuối
Ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{\left(1+1+2+4\right)^2}{a+b+c+d}=\frac{64}{a+b+c+d}\)
Lời giải:
$A=4.\sqrt{\frac{25}{4}}.\sqrt{x}-\frac{8}{3}.\sqrt{\frac{9}{4}}.\sqrt{x}-\frac{4}{3x}.\sqrt{\frac{9}{64}}.\sqrt{x^3}$
$=10\frac{x}-4\sqrt{x}-\frac{1}{2x}.x\sqrt{x}=10x-4x-\frac{1}{2}\sqrt{x}$
$=\frac{11}{2}\sqrt{x}$
Ta có:
\(64=2^6=2^{2\cdot3}=\left(2^2\right)^3=4^3\)
⇒ Chọn B
\(64=4.4.4=4^3\Rightarrow B\)
Loại \(A\) và \(D\) vì \(4^{16}>4^{3}=64\) và \(8^{8}=(2^{3})^{8}=2^{24}=4^{12}>4^{3}=64\); \(3^{4}=3.3.3.3=81>64\) (loại)