Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT đường thẳng $(d)$ có dạng: $y=ax+b$
$(d)$ đi qua $D(1;3)\Rightarrow y_D=ax_D+b$
$\Rightarrow 3=a+b$
Lại có: $(d)$ tạo với chiều dương của trục Ox 1 góc 30 độ
$\Rightarrow a=\tan 30^0=\frac{1}{\sqrt{3}}$
$\Rightarrow b=3-a=3-\frac{1}{\sqrt{3}}$
Vậy PTĐT $(d)$ là: $y=\frac{1}{\sqrt{3}}x+3-\frac{1}{\sqrt{3}}$
1a)m =1 =>( d1) y = x+2
(d2) y = -x +2 ; có a1. a2 = 1.(-1) = -1 => (d1) vuông góc với (d2)
b) để (d1) vuông góc (d2)
m(2m -3) =-1 => 2m2 -3m +1 =0 => m= 1 hoặc m =1/2
2.+ Gọi PT AB là y=ax+b
ta có \(\int^{4a+b=-1}_{2a+b=-15}\Rightarrow\int^{2a=14}_{b=-1-4a}\Rightarrow\int^{a=7}_{b=-29}\)
AB: y=7x-29
(d/) y = a1x +b1 song song với y=-3x +5 => a1 =-3 ; cắt (d) tại trúc tung => b1=-29
=> (d/) : y = - 3 x -29
a, Gọi pt đường thẳng (d1) có dạng là y = ax + b
Do (d1) có tung độ gốc bằng 10
=>b = 10
=> (d1) y = ax + 10
Vì (d1) // (d) => a = a' và b khác b'
<=> a = 4 và 10 khác 0 (Luôn đúng)
=> (d1) y = 4x + 10
b,Gọi pt đường thằng (d2) là y = mx + n
Vì (d2) vuông với (d) nên \(4m=-1\Leftrightarrow m=-\frac{1}{4}\)
\(\Rightarrow\left(d_2\right)y=-\frac{1}{4}x+n\)
Vì (d2) cắt trục Ox tại điểm có hoành độ bằng 8 nên (d2) đi qua điểm (8;0)
Khi đó \(0=-\frac{1}{4}.8+n\)
\(\Leftrightarrow n=2\)
\(\Rightarrow\left(d_2\right)y=-\frac{1}{4}x+2\)
\(a,\Leftrightarrow3m-1=-2\Leftrightarrow m=-\dfrac{1}{3}\Leftrightarrow\left(d\right):y=-\dfrac{1}{3}x-1\\ c,\text{Hs góc: }-\dfrac{1}{3}\\ \text{Gọi góc cần tìm là }\alpha>90^0\\ \Leftrightarrow\tan\left(180^0-\alpha\right)=\dfrac{1}{3}\approx\tan18^0\\ \Leftrightarrow\alpha\approx180^0-18^0=162^0\)
hệ số góc
k=tan30=3√3⇒(d):y=3√3(x−1)+3
Nếu sai thì cậu thông cảm nha .