Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: vtpt là (4;3)
Phương trình tổng quát là:
4(x-1)+3(y-2)=0
=>4x-4+3y-6=0
=>4x+3y-10=0
b: Phương trình Δ là:
2(x+2)+3(y-4)=0
=>2x+4+3y-12=0
=>2x+3y-8=0
c: Gọi (d): y=ax+b là phương trình cần tìm
Theo đề, ta có:
\(\left\{{}\begin{matrix}-2a+b=1\\3a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{5}\\b=\dfrac{7}{5}\end{matrix}\right.\)
d: Vì (d1)//(d) nên (d1): 3x-5y+c=0
Thay x=4 và y=-2 vào (d1), ta được:
c+3*4-5*(-2)=0
=>c=-22
f: (d): 2x-7y-1=0
=>Δ: 7x+2y+c=0
Thay x=3 và y=5 vào Δ, ta được:
c+21+10=0
=>c=-31
a) \(\Delta \) song song với đường thẳng \(3x + y + 9 = 0\) nên nhận vectơ pháp tuyến của đường thẳng này làm vectơ pháp tuyến là \(\overrightarrow n = \left( {3;1} \right)\)
\(\Delta \) đi qua điểm \(A(2;1)\) nên ta có phương trình tổng quát
\(3\left( {x - 2} \right) + \left( {y - 1} \right) = 0 \Leftrightarrow 3x + y - 7 = 0\)
\(\Delta \) có vectơ pháp tuyến \(\overrightarrow n = \left( {3;1} \right)\) nên có vectơ chỉ phương là \(\overrightarrow u = \left( {1; - 3} \right)\)
Phương trình tham số của đường thẳng \(\Delta \) là:
\(\left\{ \begin{array}{l}x = 2 + t\\y = 1 - 3t\end{array} \right.\)
b) \(\Delta \) vuông góc với đường thẳng \(2x - y - 2 = 0\) nên nhận vectơ pháp tuyến của đường thẳng này làm vectơ chỉ phương là \(\overrightarrow u = \left( {2; - 1} \right)\)
\(\Delta \) đi qua điểm \(B( - 1;4)\) nên ta có phương trình tham số: \(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 4 - t\end{array} \right.\)
\(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( {2; - 1} \right)\) nên có vectơ pháp tuyến là \(\overrightarrow n = \left( {1;2} \right)\)
Phương trình tổng quát của đường thẳng \(\Delta \)là:
\(\left( {x + 1} \right) + 2\left( {y - 4} \right) = 0 \Leftrightarrow x + 2y - 7 = 0\)
Bài 2:
a: VTPT là (-1;4)
PTTQ là:
-1(x+3)+4(y-2)=0
=>-x-3+4y-8=0
=>-x+4y-11=0
=>x-4y+11=0
b: Phương trình tổng quát là:
3(x+5)+2(y-2)=0
=>3x+15+2y-4=0
=>3x+2y+11=0
c: vecto CD=(4;3)
=>VTPT là (-3;4)
PTTQ là:
-3(x-5)+4(y-3)=0
=>-3x+15+4y-12=0
=>-3x+4y+3=0
a) \({d_1}\) song song với đường thẳng \({d_2}:x + 3y + 2 = 0\) nên nhận vectơ pháp tuyến của đường thẳng \({d_2}\) làm vectơ pháp tuyến là \(\overrightarrow n = \left( {1;3} \right)\)
\({d_1}\) đi qua điểm \(A(2;3)\) nên ta có phương trình tổng quát
\(\left( {x - 2} \right) + 3.\left( {y - 3} \right) = 0 \Leftrightarrow x + 3y - 11 = 0\)
b) \({d_1}\) vuông góc với đường thẳng \({d_3}:3x - y + 1 = 0\) nên nhận vectơ pháp tuyến của đường thẳng \({d_3}\) làm vectơ chỉ phương là \(\overrightarrow u = \left( {3; - 1} \right)\)
\({d_1}\) đi qua điểm \(B(4; - 1)\) nên ta có phương trình tham số: \(\left\{ \begin{array}{l}x = 4 + 3t\\y = - 1 - t\end{array} \right.\)
a: (Δ)//d nên Δ: -x+2y+c=0
=>VTPT là (-1;2)
=>VTCP là (2;1)
PTTS là:
x=3+2t và y=1+t
b: (d): -x+2y+1=0
=>Δ: 2x+y+c=0
Thay x=4 và y=-2 vào Δ, ta được:
c+8-2=0
=>c=-6
a/ Đường thẳng đã cho nhận \(\left(5;2\right)\) là 1 vtpt
Phương trình tổng quát:
\(5\left(x-1\right)+2\left(y-3\right)=0\Leftrightarrow5x+2y-11=0\)
b/ Đường thẳng đã cho nhận \(\left(3;2\right)\) là 1 vtcp
Phương trình tham số: \(\left\{{}\begin{matrix}x=2+3t\\y=-1+2t\end{matrix}\right.\)
c/ Đường thẳng đã cho có pt:
\(-2\left(x-2\right)+3\left(y+1\right)=0\Leftrightarrow-2x+3y+7=0\)
d/ \(\overrightarrow{AB}=\left(-3;3\right)=-3\left(1;-1\right)\Rightarrow\) đường thẳng nhận \(\left(1;1\right)\) là 1 vtpt
Phương trình:
\(1\left(x-2\right)+1\left(y-3\right)=0\Leftrightarrow x+y-5=0\)
e/ Đường thẳng song song d' nên nhận \(\left(2;-1\right)\) là 1 vtpt
Phương trình:
\(2\left(x-1\right)-1\left(y-4\right)=0\Leftrightarrow2x-y+2=0\)
a) phương trình tổng quát của đường thẳng đi qua \(M\left(1;-2\right)\) có VTPT\(\left(2;3\right)\) là \(2\left(x-1\right)+3\left(y+2\right)=0\) \(\Leftrightarrow2x+3y+4=0\)
vì đường thẳng này nhận \(\overrightarrow{u}\left(2;3\right)\) làm VTPT \(\Rightarrow\) nó nhận \(\overrightarrow{n}\left(3;-2\right)\) làm VTCP \(\Rightarrow\) phương trình tham số của nó là \(\left\{{}\begin{matrix}x=1+3t\\y=-2-2t\end{matrix}\right.\)
b) ta có đường thẳng d nhận \(\overrightarrow{u}\left(-2;1\right)\) làm VTCP \(\Rightarrow\) nhận \(\overrightarrow{n}\left(1;2\right)\) làm VTPT
phương trình tổng quát của đường thẳng đi qua \(N\left(0;-1\right)\) và nhận \(\overrightarrow{n}\left(1;2\right)\) làm VTPT là \(1\left(x-0\right)+2\left(y+1\right)=0\Leftrightarrow x+2y+2=0\)
vì nó nhận \(\overrightarrow{u}\left(-2;1\right)\) làm VTCP \(\Rightarrow\) phương trình tham số của nó là : \(\left\{{}\begin{matrix}x=-2t\\y=-1+t\end{matrix}\right.\)
c) ta có d đi qua điểm M và N \(\Rightarrow\) nó nhận \(\overrightarrow{MN}\left(2;3\right)\) làm VTCP
\(\Rightarrow\) phương trình tham số của đường thẳng đi qua \(M\left(1;-1\right)\) và nhận \(\overrightarrow{MN}\) làm VTCP là : \(\left\{{}\begin{matrix}x=1+2t\\y=-1+3t\end{matrix}\right.\)
ta có d nhận \(\overrightarrow{MN}\left(2;3\right)\) làm VTCP \(\Rightarrow\) d nhận \(\overrightarrow{n}\left(3;-2\right)\) làm VTPT
\(\Rightarrow\) phương trình tổng quát của d là : \(3\left(x-2\right)-2\left(y-3\right)=0\Leftrightarrow3x-2y=0\)
câu d và câu e ) bn chỉ cần tìm VTPT của 2 đường thẳng đó và \(\Rightarrow\) VTCP là ra hết thôi .
gợi ý : đường thẳng \(2x-3y-3=0\) có \(\overrightarrow{u}\left(2;-3\right)\) là VTPT
đường thẳng \(x-y+5=0\) có \(\overrightarrow{n}\left(1;-1\right)\) là VTPT