Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\alpha_1\right)\)//\(\left(\alpha'_1\right)\)
b) \(\left(\alpha_2\right)\) cắt \(\left(\alpha'_2\right)\)
c) \(\left(\alpha_3\right)\) trùng với \(\left(\alpha'_3\right)\)
Vectơ →nn→(2 ; -1 ; 3) là vectơ pháp tuyến của mặt phẳng ( β) .
Vì (α) // ( β) nên →nn→ cũng là vectơ pháp tuyến của mặt phẳng (α) .
Phương trình mặt phẳng (α) có dạng:
2(x - 2) - (y + 1) + 3(z - 2) = 0
hay 2x - y + 3z -11 = 0.
\(\overrightarrow{AB}=\left(-1;-2;1\right)\); \(\overrightarrow{n_{\alpha}}=\left(2;-1;2\right)\)\(\Rightarrow\overrightarrow{n_p}=\left[\overrightarrow{AB};\overrightarrow{n_{\alpha}}\right]=\left(-3;4;5\right)\)
Phương trình mặt phẳng (P) : \(-3x+4y+5z=0\)
\(R=d\left(A;\left(\alpha\right)\right)=\frac{\left|6-1+2+1\right|}{\sqrt{9}}=\frac{8}{3}\)
Phương trình mặt cầu (S) : \(\left(x-3\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=\frac{64}{9}\)
Mặt phẳng (P) có vecto pháp tuyến \(\overrightarrow{p}=\left(1;2;3\right)\)
Mặt phẳng (Q) có vecto pháp tuyến \(\overrightarrow{q}=\left(3;2-1\right)\)
Vì \(1:2:3\ne3:2:\left(-1\right)\) nen (P) và (Q) cắt nhau.
Do mặt phẳng (R) cần tìm có phương trình vuông góc với cả (P) và (Q) nên (R) nhận 2 vecto \(\overrightarrow{p}\) và \(\overrightarrow{q}\) làm cặp vecto chỉ phương.
Vậy mặt phẳng (R) có vecto pháp tuyến \(\overrightarrow{r}\) cùng phương với vecto :
\(\left[\overrightarrow{p};\overrightarrow{q}\right]=\left(\left|\begin{matrix}2&3\\2&-1\end{matrix}\right|;\left|\begin{matrix}3&1\\-1&3\end{matrix}\right|;\left|\begin{matrix}1&2\\3&2\end{matrix}\right|\right)\)
\(=\left(-8;10;-4\right)=-2\left(4;-5;2\right)\)
Do đó có thể chọn \(\overrightarrow{r}=\left(4;-5;2\right)\)
Suy ra (R) có phương trình :
\(4\left(x-1\right)-5\left(y-1\right)+2\left(z-1\right)=0\)
hay \(\left(R\right):4x-5y+3z-1=0\)