K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a) y = x3 + 3x2 + 1

Tập xác định: D = R

y’= 3x2 + 6x = 3x(x+ 2)

y’=0 ⇔ x = 0, x = -2

Bảng biến thiên:

Đồ thị hàm số:

b) Số nghiệm của phương trình \(x^3+3x^2+1=\dfrac{m}{2}\) chính là số giao điểm của (C) và đường thẳng (d): \(y=\dfrac{m}{2}\) (đường thẳng (d) vuông góc với Oy và cắt Oy tại \(\dfrac{m}{2}\) )

Từ đồ thị ta thấy:

- Với \(\dfrac{m}{2}< 1\Leftrightarrow m< 2\) : (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm

- Với \(\dfrac{m}{2}=1\Leftrightarrow m=2\) : (d) tiếp xúc với (C) tại 1 điểm và cắt (C) tạo 1 điểm, phương trình có hai nghiệm.

- Với \(1< \dfrac{m}{2}< 5\)\(\Leftrightarrow2< m< 10\)

- Với \(\dfrac{m}{2}=5\Leftrightarrow m=10\): (d) cắt (C) tại 1 điểm và tiếp xúc với (C) tại 1 điểm, phương trình có hai nghiệm.

- Với  \(\dfrac{m}{2}>5\Leftrightarrow m>10\): (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm

c) Điểm cực đại (-2, 5), điểm cực tiểu (0, 1).

Đường thẳng đi qua hai điểm này có phương trình là: 1\(y-14=x-2\Leftrightarrow y=x+12\).

 

31 tháng 3 2017

a) y = x3 + 3x2 + 1

Tập xác định: D = R

y’= 3x2 + 6x = 3x(x+ 2)

y’=0 ⇔ x = 0, x = -2

Bảng biến thiên:

Đồ thị hàm số:

b) Số nghiệm của phương trình x^3+3x^2+1=m/2chính là số giao điểm của (C) và đường thẳng (d): y=m/2 (đường thẳng (d) vuông góc với Oy và cắt Oy tại )

Từ đồ thị ta thấy:

- Với m/2<1⇔m<2: (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm

- Với m/2=1⇔ m = 2: (d) tiếp xúc với (C) tại 1 điểm và cắt (C) tạo 1 điểm, phương trình có hai nghiệm

- Với 1<m/2<5⇔ 2<m

- Với m/2=5⇔m=10: (d) cắt (C) tại 1 điểm và tiếp xúc với (C) tại 1 điểm, phương trình có hai nghiệm.

- Với m/2>5⇔m>10 : (d) cắt (C) tại 1 điểm, phương trình có 1 nghiệm

c) Điểm cực đại (-2, 5), điểm cực tiểu (0, 1).

Đường thẳng đi qua hai điểm này có phương trình là: y−14=x−2⇔y=−2x+1


31 tháng 3 2017

a) Xét hàm số y = f(x)=12x4−3x2+32f(x)=12x4−3x2+32 (C) có tập xác định: D = R

y’ = 2x3 – 6x = 2x(x2 – 3)

y’ = 0 ⇔ x = 0, x = ±√3

Bảng biến thiên:

Đồ thị hàm số:

b)

y’’ = 6x2 – 6x

y’’ = 0 ⇔ 6x2 – 6x = 0 ⇔ x = ± 1

y’(-1) = 4, y’’(1) = -4, y(± 1) = -1

Tiếp tuyến của (C) tại điểm (-1, -1) là : y = 4(x+1) – 1= 4x+3

Tiếp tuyến của (C) tại điểm (1, -1) là: y = -4(x-1) – 1 = -4x + 3

c) Ta có: \(x^4-6x^2+3=m\)\(\Leftrightarrow\dfrac{x^4}{2}-3x^2+\dfrac{3}{2}=\dfrac{m}{2}\).

Số nghiệm của (1) là số giao điểm của (C) và đường thẳng (d) : \(y=\dfrac{m}{2}\).

Dễ thấy:

m < -6: ( 1) vô nghiệm

m = -6 : (1) có 2 nghiệm

-6 < m < 3: (1) có 4 nghiệm

m = 3: ( 1) có 3 nghiệm

m > 3: (1) có 2 nghiệm

 

22 tháng 6 2019

Ta có: \(f\left(x\right)=y=\frac{x^2+mx}{1-x}\Rightarrow y'=\frac{\left(2x+mx\right)\left(1-x\right)+\left(x^2+mx\right)}{\left(1-x\right)^2}=\frac{-x^2+2x+m}{\left(1-x\right)^2}\)\(\)\(\left(D=R/\left\{1\right\}\right)\)

Đặt \(g\left(x\right)=-x^2+2x+m\)\(\Rightarrow\)f(x) cùng dấu với y' trên D

Xét pt g(x)=0

\(\Delta'=m+1\), Hàm số có 2 điểm cực trì<=> pt có 2 nghiệm phân biệt khác 1

\(\Leftrightarrow\hept{\begin{cases}\Delta'>0\\f\left(1\right)\ne0\end{cases}\Leftrightarrow m>-1}\)

Khi đó 2 điểm cực trì là A(x1,f(x1) ) và B(x2, f(x2) )

Lại có \(f'\left(x_1\right)=\frac{\left(2x_1+m\right)\left(1-x_1\right)+\left(x_1^2+mx_1\right)}{\left(1-x_1\right)^2}=0\Rightarrow x_1^2+mx_1=-\left(2x_1+m\right)\left(1-x_1\right)\)

\(\Rightarrow f\left(x_1\right)=\frac{x_1^2+mx_1}{1-x_1}=-2x_1-m.\)

=>\(f\left(x_2\right)=-2x_2-m\)

Khoảng cách giữa 2 điểm cực trị:

\(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}=\sqrt{\left(x_1-x_2\right)^2+\left(2x_1-2x_2\right)^2}=|x_1-x_2|\sqrt{5}=10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=20\)

A/d Vi-ét cho pt g(x)=0\(\Rightarrow4+4m=20\Leftrightarrow m=4\)

Vậy m=4

M
22 tháng 6 2019

Bạn giải thích cho mình chỗ trị tuyệt đối x1- x2 nhân căn 5 với ạ?

31 tháng 3 2017

a) Điểm (-1 ; 1) thuộc đồ thị của hàm số ⇔ .

b) m = 1 . Tập xác định : R.

y' = 0 ⇔ x = 0.

Bảng biến thiên:

Đồ thị như hình bên.

c) Vậy hai điểm thuộc (C) có tung độ là A(1 ; ) và B(-1 ; ). Ta có y'(-1) = -2, y'(1) = 2.

Phương trình tiếp tuyến với (C) tại A là : y - = y'(1)(x - 1) ⇔ y = 2x -

Phương trình tiếp tuyến với (C) tại B là : y - = y'(-1)(x + 1) ⇔ y = -2x - .

26 tháng 6 2017

vecto chỉ phương của d là a = PQ = (4;2;1) (vì d đi qua hai điểm P(1;2;3),Q(5;4;4)

Vậy pt tham số của đường thẳng d là:  x = 1 + 4 t y = 2 + 2 t z = 3 + t

31 tháng 3 2017

a) Tập xác định : D = R

limx→−∞f(x)=+∞limx→+∞f(x)=−∞y′=−3x2+6x+9=0⇔x=−1,x=3limx→−∞⁡f(x)=+∞limx→+∞⁡f(x)=−∞y′=−3x2+6x+9=0⇔x=−1,x=3

Bảng biến thiên:

Đồ thị hàm số:

b) y=f(x) = f(x) = -x3+3x2+9x+2.

f’(x) = -3x2+6x+9. Do đó:

f’(x-1)=-3(x-1)2+6(x-1)+9

= -3x2 + 12x = -3x(x-4) > 0 ⇔ 0 < x < 4

c) f’’(x) = -6x+6

f’’(x0) = -6 ⇔ -6x0 + 6 = -6 ⇔ x0 = 2

Do đó: f’(2) = 9, f(2) = 24. Phương trình tiếp tuyến của (C) tại x0 = 2 là:

y=f’(2)(x-2) + f(2) hay y = 9x+6

22 tháng 11 2016

\(y'=4x\left(x-m\right)\left(x+m\right)\\ y'=0\Leftrightarrow\begin{cases}x=0\\x=\pm m\end{cases}\)

Với m=0 thì hàm số có 3 cực trị là 0, -m và m

đồ thị hàm số có 3 điểm cực trị \(A\left(0;1\right),M\left(-m;1-m^4\right),N\left(m;1-m^4\right)\)

Nhận thấy \(AM=AN\) nên \(\Delta AMN\) cân tại A với mọi m

Gọi trung điểm MN là \(I\left(0;1-m^4\right)\)

\(\Delta AMN\) vuông cân tại A khi và chỉ khi \(IA=IM=IN\) hay\(IA=IN\)

\(\Leftrightarrow IA=IN\Leftrightarrow\left|m^4\right|=\left|m\right|\Leftrightarrow m=\pm1\) (vì \(m\ne0\))

 

16 tháng 11 2016

kho vai

9 tháng 2 2020

a) Trục Ox là đường thẳng đi qua O(0, 0, 0) và nhận i→=(1,0,0) làm vectơ chỉ phương nên có phương trình tham số là:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

* Tương tự, trục Oy có phương trình

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Trục Oz có phương trình

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

b) Đường thẳng đi qua M0 (x0,y0,z0) song song với trục Ox sẽ có vectơ chỉ phương là i→(1,0,0) nên có phương trình tham số là:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

tương tự ta có Phương trình của đường thẳng đi qua M0 (x0,y0,z0) và song song với Oy là:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

phương trình đường thẳng đi qua M0 (x0,y0,z0) và song song với Oz là

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

c) Đường thẳng đi qua M(2, 0, -1) và có vectơ chỉ phương u→(-1,3,5) có phương trình tham số là

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

có phương trình chính tắc là

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

d) Đường thẳng đi qua N(-2, 1, 2) và có vectơ chỉ phương u→(0,0,-3) có phương trình tham số là

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Đường thẳng này không có Phương trình chính tắc.

e) Đường thẳng đi qua N(3, 2, 1) và vuông góc với mặt phẳng: 2x- 5y + 4= 0 nên nó nhận vectơ pháp tuyến của mặt phẳng này làn→(2,-5,0) là vectơ chỉ phương, nên ta có phương trình tham số là

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Đường thẳng này không có Phương trình chính tắc.

f) Đường thẳng đi qau P(2, 3, -1) và Q(1, 2, 4) sẽ nhận PQ→(-1,-1,5) là vectơ chỉ phương, nên có phương trình tham số là

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

và có phương tình chính tắc là

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

9 tháng 2 2020

ÔI THÔI CHẾT LM SAI