Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết phương trình : a) đường qua A ( 2,1 ) B ( 3,1 )
b) đường song song y = 2x và qua C ( 3,1 )
a: Gọi (d): y=ax+b là đường thẳng cần tìm
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+b=1\\3a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=0\\2a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=1\end{matrix}\right.\)
b: Vì (d)//y=2x nên a=2
Vậy: (d): y=2x+b
Thay x=3 và y=1 vào (d), ta được:
b+6=1
hay b=-5
a) Vẽ đường thẳng y = 2x -1 trên mặt phẳng tọa độ
Với x = 0 thì y = -1, ta được điểm A(0; -1) thuộc đồ thị hàm số y = 2x – 1
Với x = 1 thì y = 1, ta được điểm B(1; 1) thuộc đường thẳng y = 2x – 1
Đồ thị hàm số y = 2x – 1 là một đường thẳng đi qua hai điểm A(0; -1) và điểm B(1; 1)
b) Vì đường thẳng y = ax + b \(\left( {a \ne 0} \right)\) song song với đường thẳng y = 2x -1 nên a = 2
Đường thẳng dã cho là: y = 2x + b
Vì đường thẳng y = 2x + b đi qua điểm M(1; 3) nên:
3 = 2.1 + b suy ra b = 1
Vậy đường thẳng cần tìm là; y = 2x + 1
* Vẽ đường thẳng y = 2x + 1
Với x = 0 thì y = 1, ta được điểm P(0, 1) thuộc đồ thị hàm số y = 2x + 1
Với x = 1 thì y = 1, ta được điểm Q(1; 3) thuộc đồ thị hàm số y = 2x + 1
Đồ thị hàm số y = 2x + 1 là đường thẳng đi qua hai điểm P(0; 1) và Q(1; 3)
Bạn tự vẽ hình nhé.
Cho ABCD là hình thang có đáy lớn CD. Qua K kẻ đường thẳng song song BD cắt BC ở Q.
a, Vì AB//CD nên AB//CI.
Đường thẳng song song với BC đi qua A cắt CD tại I nên AI//CD
Xét tứ giác ABCI có:
\(\left\{{}\begin{matrix}AB//CI\\AI//BC\end{matrix}\right.\)
=> T/giác ABCI là hình bình hành
b, Vì AB//CD nên DK//CD
Đường thẳng song song với AD đi qua A cắt CD ở K nên BK//AD
Xét tứ giác ABKD có
\(\left\{{}\begin{matrix}AB//DK\\BK//AD\end{matrix}\right.\)
=> t/giác ABDK là hbh
=> AB=DK
c, Theo câu a, t/g ABCI là hbh nên AB=CI
Mà AB=DK ( c/m câu b )
Suy ra: DK=CI
=> DK + CD = CI + CD
<=> DI=CK
AD//BC; BD//AC nên ADBC là hình bình hành.
AF//BC; AB//FC nên AFCB là hình bình hành.
AC//BE; AB//CE nên ACEB là hình bình hành.
-Gọi G là giao của CD và BF.
-Ta có: ADBC là hình bình hành (cmt)
\(\Rightarrow\)CD đi qua trung điểm AB.
-Ta có: AFCB là hình bình hành (cmt)
\(\Rightarrow\)BF đi qua trung điểm AC.
-Xét △ABC có:
CD là trung tuyến (CD đi qua trung điểm AB)
BF là trung tuyến (BF đi qua trung điểm AC)
G là giao của CD và BF (gt)
\(\Rightarrow\) G là trọng tâm của △ABC.
\(\Rightarrow\)AG đi qua trung điểm BC (1)
-Ta có: ACEB là hình bình hành (cmt)
\(\Rightarrow\) AE đi qua trung điểm BC (2)
-Từ (1) và (2) suy ra: A,G,E thẳng hàng hay ba đường thẳng AE,BF,CD đồng quy tại G.