K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

TenAnh1 TenAnh1 A = (-4.36, -5.2) A = (-4.36, -5.2) A = (-4.36, -5.2) B = (11, -5.2) B = (11, -5.2) B = (11, -5.2)

9 tháng 4 2017

a) Năm số hạng đầu của dãy số là 3, √10, √11, √12, √13.

b) Ta có: u1 = 3 = √9 = √(1 + 8)

u2 = √10 = √(2 + 8)

u3 = √11 = √(3 + 8)

u4 = √12 = √(4 + 8)

...........

Từ trên ta dự đoán un = √(n + 8), với n ε N* (1)

Chứng minh công thức (1) bằng phương pháp quy nạp:

- Với n = 1, rõ ràng công thức (1) là đúng.

- Giả sử (1) đúng với n = k ≥ 1, tức là có uk = √(k + 8) với k ≥ 1.

Theo công thức dãy số, ta có:

uk+1 = .

Như vậy công thức (1) đúng với n = k + 1.


9 tháng 4 2017

a) Năm số hạng đầu của dãy số là 3, √10, √11, √12, √13.

b) Ta có: u1 = 3 = √9 = √(1 + 8)

u2 = √10 = √(2 + 8)

u3 = √11 = √(3 + 8)

u4 = √12 = √(4 + 8)

...........

Từ trên ta dự đoán un = √(n + 8), với n ε N* (1)

Chứng minh công thức (1) bằng phương pháp quy nạp:

- Với n = 1, rõ ràng công thức (1) là đúng.

- Giả sử (1) đúng với n = k ≥ 1, tức là có uk = √(k + 8) với k ≥ 1.

Theo công thức dãy số, ta có:

uk+1 = .

Như vậy công thức (1) đúng với n = k + 1.


23 tháng 5 2017

a)
\(u_1=1+\left(1-1\right).2^1=1\);
\(u_2=1+\left(2-1\right).2^2=1+2^2=5\);
\(u_3=1+\left(3-1\right).2^3=1+2.2^3=17\);
\(u_4=1+\left(4-1\right).2^4=1+3.2^4=49\);
\(u_5=1+\left(5-1\right).2^5=1+4.2^5=129\).
b)
\(u_n=1+\left(n-1\right).2^n\).
\(u_{n+1}=1+\left(n+1-1\right).2^{n+1}=1+n.2^{n+1}\)
\(=1+\left(n-1\right).2^{n+1}+2^{n+1}\)\(=2\left[1+\left(n-1\right).2^n\right]+2^{n+1}-1\)
\(=2.u_n+2^{n+1}-1\).
Vậy công thức truy hồi của dãy số là: \(\left\{{}\begin{matrix}u_1=1\\u_n=2u_{n-1}+2^n-1\end{matrix}\right.\).
c) Có \(u_n=1+\left(n-1\right).2^n\ge1+\left(1-1\right).2^n=1\).
Vậy \(u_n\ge1,\forall n\in N^{\circledast}\). Nên dãy \(\left(u_n\right)\) bị chặn dưới bởi 1.
Xét .
\(u_n-u_{n-1}=2u_{n-1}+2^n-1-u_{n-1}=u_{n-1}+2^n-1\)\(\ge1+2^n-1=2^n>0,\forall n\in N^{\circledast}\).
Vậy \(u_n-u_{n-1}>0,\forall n\in N^{\circledast}\) nên dãy \(\left(u_n\right)\) là dãy số tăng.

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_1} = 1\)

\( \Rightarrow {u_2} = 2.1 = 2\)

\( \Rightarrow {u_3} = 3.2 = 6\)

\( \Rightarrow {u_4} = 4.6 = 24\)

\( \Rightarrow {u_5} = 5.24 = 120\)

b)

Ta có:

\({u_2} = 2 = 2.1 \)

\({u_3} = 6= 1.2.3 \)

\({u_4} = 24 = 1.2.3.4\)

\({u_5} = 120 = 1.2.3.4.5\)

\( \Rightarrow {u_n} = 1.2.3....n = n!\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Năm số hạng đầu của dãy số là: 3; 9; 19; 33; 51

b)    Năm số hạng đầu của dãy số là: \( - 1;\frac{1}{3}; - \frac{1}{5};\frac{1}{7}; - \frac{1}{9}\)

c)    Năm số hạng đầu của dãy số là: \(2;2;\frac{8}{3};4;\frac{{32}}{5}\)

d)    Năm số hạng đầu của dãy số là: \(2;\frac{9}{4};\frac{{64}}{{27}};\frac{{625}}{{256}};\frac{{7776}}{{3125}}\)

9 tháng 4 2017

a) Ta có:

u1 = 2, u2 = 2u1 – 1 = 3, u3 = 2u2 – 1= 5

u4 = 2u3 -1 = 9, u5 = 2u4 – 1= 10

b) Với n = 1, ta có: u1 = 21-1 + 1 = 2 : đúng

Giả sử công thức đúng với n = k. Nghĩa là: uk = 2k-1 + 1

Ta chứng minh công thức cũng đúng với n = k + 1,

Nghĩa là chứng minh:

Uk+1 = 2(k+1)-1 + 1 = 2k + 1

Ta có: uk+ 1 = 2uk – 1 = 2(2k -1+ 1) -1 = 2.2k -1 + 2 – 1 = 2k + 1 (đpcm)

Vậy un = 2n-1 + 1 với mọi n ∈ N*