Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1111=1000+100+10+1=10^3+10^2+10^1+1\)
\(1247=1000+2\times100+4\times10+7=10^3+2\times10^2+4\times10^1+7\)
\(1543=1000+5\times100+4\times10+3=10^3+5\times10^2+4\times10^1+3\)
\(1794=1000+7\times100+9\times10+4=10^3+7\times10^2+9\times10^1+4\)
\(1876=1000+8\times100+7\times10+6=10^3+8\times10^2+7\times10^1+6\)
\(1008=1000+8=10^3+8\)
\(1080=1000+8\times10=10^3+8\times10^1\)
\(1709=1000+7\times100+9=10^3+7\times10^2+9\)
\(1500=1000+5\times100=10^3+5\times10^2\)
\(1097=1000+9\times10+7=10^3+9\times10^1+7\)
\(20000=2\times10000=2\times10^4\)
\(27000=2\times10000+7\times1000=2\times10^4+7\times10^3\)
\(28700=2\times10000+8\times1000+7\times100\)
\(24004=2\times10000+4\times1000+4=2\times10^4+4\times10^3+4\)
\(26013=2\times10000+6\times1000+1\times10+3=2\times10^4+6\times10^3+10^1+3\)
\(20508=2\times10000+5\times100+8=2\times10^4+5\times10^2+8\)
\(20358=2\times10000+3\times100+5\times10+8=2\times10^4+3\times10^2+5\times10^1+8\)
\(20009=2\times10000+9=2\times10^4+9\)
\(29830=2\times10000+9\times1000+8\times100+3\times10=2\times10^4+9\times10^3+8\times10^2+3\times10^1\)
\(25763=2\times10000+5\times1000+7\times100+6\times10+3=2\times10^4+5\times10^3+7\times10^2+6\times10^1+3\)
1.
a) \(3^4\times3^5\times3^6=3^{4+5+6}=3^{15}\)
b) \(5^2\times5^4\times5^5\times25=5^2\times5^4\times5^5\times5^2=5^{2+4+5+2}=5^{13}\)
c) \(10^8\div10^3=10^{8-3}=10^5\)
d) \(a^7\div a^2=a^{7-2}=a^5\)
2.
\(987=900+80+7\\ =9\times100+8\times10+7\\ =9\times10^2+8\times10^1+7\times10^0\)
\(2021=2000+20+1\\ =2\times1000+2\times10+1\times1\\ =2\times10^3+2\times10^1+1\times10^0\)
\(abcde=a\times10000+b\times1000+c\times100+d\times10+e\times1\\ =a\times10^4+b\times10^3+c\times10^2+d\times10^1+e\times10^0\)
a, 48.84
= (22)8.(23)4
= 216.212
= 228
b, 415.515
= (4.5)15
= 2015
c, 210.15 + 210.85
= 210.(15 + 85)
= 210.100
=210.(2.5)2
= 212.52
d, 33.92
= 33 . (32)2
= 33.34
= 37
e, 512.7 - 511.10
= 511.(5.7 - 10)
= 511.25
=511.52
=513
f, \(x^1\).\(x^2\).\(x^3\)....\(x^{100}\)
= \(x^{1+2+3+...+100}\)
= \(x^{\left(1+100\right).100:2}\)
= \(x^{5050}\)
a12 : a8 = a12 -8 = a4
a10 : a = a10- 1 = a9
a7 . a4 = a7+4 = a11
Mình thấy bài này khó quá