Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
a) (a + b)2 – (a – b)2 = (a2 + 2ab + b2) – (a2 – 2ab + b2)
= a2 + 2ab + b2 – a2 + 2ab - b2 = 4ab
Hoặc (a + b)2 – (a – b)2 = [(a + b) + (a – b)][(a + b) – (a – b)]
= (a + b + a – b)(a + b – a + b)
= 2a . 2b = 4ab
b) (a + b)3 – (a – b)3 – 2b3
= (a3 + 3a2b + 3ab2 + b3) – (a3 – 3a2b + 3ab2 – b3) – 2b3
= a3 + 3a2b + 3ab2 + b3 – a3 + 3a2b - 3ab2 + b3 – 2b3
= 6a2b
Hoặc (a + b)3 – (a – b)3 – 2b3 = [(a + b)3 – (a – b)3] – 2b3
= [(a + b) – (a – b)][(a + b)2 + (a + b)(a – b) + (a – b)2] – 2b3
= (a + b – a + b)(a2 + 2ab + b2 + a2 – b2 + a2 – 2ab + b2) – 2b3
= 2b . (3a2 + b2) – 2b3 = 6a2b + 2b3 – 2b3 = 6a2b
c) (x + y + z)2 – 2(x + y + z)(x + y) + (x + y)2
= x2 + y2 + z2+ 2xy + 2yz + 2xz – 2(x2 + xy + yx + y2 + zx + zy) + x2 + 2xy + y2
= 2x2 + 2y2 + z2 + 4xy + 2yz + 2xz – 2x2 – 4xy – 2y2 – 2xz – 2yz = z2
f: \(x^2y^2+2xy+1=\left(xy+1\right)^2\)
g: \(\left(3x-2y\right)^2+2\left(3x-2y\right)+1=\left(3x-2y+1\right)^2\)
h: \(\left(x-3y\right)^2-8\left(x-3y\right)+16=\left(x-3y-4\right)^2\)
i: \(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)^2=4x^2\)
a,16x2-9
=42x2-32
=(4x-3)(4x+3) HĐT thứ 3
b,9a2-25b2
=32a2-52b2
=(3a-5b)(3a+5b) HĐT thứ 3
c,81-y4
=32.32-y2.y2
=(32-y2)
=(3-y)(3+y) HĐT thứ 3
d,(2x+y)2-1
=(2x+y-1)(2x+y-1) HĐT thứ 3
e,(x+y+z)2-(x-y-z)2
cái này là HĐT thứ 8 mở rộng bạn lên mạng tìm nha
a) \(16x^2-9=\left(4x\right)^2-3^2=\left(4x-3\right).\left(4x+3\right)\)
b) \(9a^2-25b^4=\left(3a\right)^2-\left(5b^2\right)^2=\left(3a-5b^2\right).\left(3a+5b^2\right)\)
c) \(81-y^4=9^2-\left(y^2\right)^2=\left(9-y^2\right).\left(9+y^2\right)\)
d)\(\left(2x+y\right)^2-1=\left(2x+y\right)^2-1^2=\left(2x+y-1\right).\left(2x+y+1\right)\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Bài 1:
a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)
\(=10-10x=10(1-x)\)
b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)
\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)
\(=-7x^2+7x=7x(1-x)\)
c)
\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)
\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)
\(=\left\{3-x-5[9x-2]\right\}(-2x)\)
\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)
Bài 2:
a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)
\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)
\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)
b)
\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)
\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)
\(2x^2+3(x^2-1)=5x(x+1)\)
\(a.\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz\\ b.\left(x-y+z\right)^2=x^2+y^2+z^2-2xy-2yz+2xz\\ c.\left(x-y-z\right)^2=x^2+y^2+z^2-2xy+2yz-2xz\)
a, \(\left(x+y+z\right)^2=x^2+y^2+c^2+2xy+2yz+2zx\)
b, \(\left(x-y-z\right)^2=x^2+y^2+z^2-2xy+2yz-2zx\)
c, \(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy-2yz+2xz\)