Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{2}{x-5}\)
b,\(\dfrac{2}{x+5}\)
c,ko. vì tốc độ thuyền xuôi dòng sẽ nhanh hơn tốc độ thuyền ngược dòng
a) Thời gian Tâm đi là: \(\dfrac{{15}}{x}\) (giờ)
Tốc độ Tâm đi lúc về là: \(x + 4\) (km/h)
Thời gian Tâm về là: \(\dfrac{{15}}{{x + 4}}\) (giờ)
Tổng thời gian lượt đi và về là:
\(T = \dfrac{{15}}{x} + \dfrac{{15}}{{x + 4}} = \dfrac{{15\left( {x + 4} \right)}}{{x\left( {x + 4} \right)}} + \dfrac{{15x}}{{x\left( {x + 4} \right)}} = \dfrac{{15x + 60 + 15x}}{{x\left( {x + 4} \right)}} = \dfrac{{30x + 60}}{{{x^2} + 4x}}\)
b) Hiệu thời gian đi và về là:
\(t = \dfrac{{15}}{x} - \dfrac{{15}}{{x + 4}} = \dfrac{{15\left( {x + 4} \right)}}{{x\left( {x + 4} \right)}} - \dfrac{{15x}}{{x\left( {x + 4} \right)}} = \dfrac{{15x + 60 - 15x}}{{x\left( {x + 4} \right)}} = \dfrac{{60}}{{{x^2} + 4x}}\)
c) Thay \(x = 10\) vào \(T\) và \(t\) ta có:
\(T = \dfrac{{30.10 + 60}}{{{{10}^2} + 4.10}} = \dfrac{{360}}{{140}} = \dfrac{{19}}{7}\)
\(t = \dfrac{{60}}{{{{10}^2} + 4.10}} = \dfrac{{60}}{{140}} = \dfrac{3}{7}\)
Giả sử có 1 người a đi từ A cùng lúc với người đi xe máy cới vận tốc ít hơn vận tốc người đi xe máy là 5km/giờ
thì người đi xe máy đến nơi thì người a còn 30 phút nữa mới tới.
Vận tốc người a là:
40 - 5 = 35km/giờ
30 phút = \(\frac{1}{2}\)giờ
Quãng đường người a còn phải đi khi người đi xe máy đã đến nơi là:
35 x \(\frac{1}{2}\) = 17,5 (km)
Giả sử người đi xe máy quay về và người a cũng vậy thì hai người gặp nhau tại A.
Thời gian hai người gặp nhau là:
17,5 : 5 = 3,5 (giờ)
quãng đường AB là:
40 x 3,5 = 140 (km)
ĐS:140km
THANKS!
goi x la qduong
thoi gian di x/40
thoi gian ve x/35
pt: x/35-x/40 = 1/2
Quãng đường thuyền đi xuôi dòng đi được trong khoảng thời gian \(t\) là:
\(\left( {v + 3} \right)t = vt + 3t\) (km)
Quãng đường ca nô đi ngược dòng đi được trong khoảng thời gian \(t\) là:
\(\left( {2v - 3} \right)t = 2vt - 3t\) (km)
Tổng độ dài quãng đường thuyền và ca nô đi được trong khoảng thời gian \(t\) là:
\(\left( {vt + 3t} \right) + \left( {2vt - 3t} \right) = 3vt\) (km)
Gọi khoảng cách lúc đầu giữa hai phương tiện là \(s\) (km).
Khoảng cách giữa hai phương tiện sau khoảng thời gian \(t\) là:
\(s - 3vt\) (km)
Ta có các biểu thức:
\(s=vt;v=\dfrac{s}{t};t=\dfrac{s}{v}\)
Tất cả đều là đơn thức không phải đa thức
`S = v.t; v = S/t; t = S/v`.
Không phải là đa thức.
Thời gian đội đi xuôi dòng từ A đến B là: \(\dfrac{3}{{x + 1}}\) (giờ)
Thời gian đội đi ngược dòng từ B về A là: \(\dfrac{3}{{x - 1}}\) (giờ)
Điều kiện: \(x \ne \pm 1\)
Thời gian thi của đội là:
\(\dfrac{3}{{x + 1}} + \dfrac{3}{{x - 1}} = \dfrac{{3\left( {x - 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} + \dfrac{{3\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \dfrac{{3x - 3 + 3x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{{6x}}{{{x^2} - 1}}\) (giờ)
Chênh lệch giữa thời gian đi và bề của đội là: \(\dfrac{3}{{x - 1}} - \dfrac{3}{{x + 1}} = \dfrac{{3\left( {x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - \dfrac{{3\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{{3x + 3 - 3x + 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{6}{{{x^2} - 1}}\) (giờ)
Khi \(x = 6\) (thỏa mãn điều kiện) thì thời gian thi của đội là: \(\dfrac{{6.6}}{{{6^2} - 1}} = \dfrac{{36}}{{36 - 1}} = \dfrac{{36}}{{35}}\) (giờ)
Khi \(x = 6\) (thỏa mãn điều kiện) thì chênh lệch giữa thời gian đi và về của đội là: \(\dfrac{6}{{{6^2} - 1}} = \dfrac{6}{{36 - 1}} = \dfrac{6}{{35}}\) (giờ)