Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)
Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2
\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)
\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)
\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6
\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)
\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2
\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4
a) Nếu x<7/2 -> F(x)=3x+ 5 - 7+2x
Nếu x \(\ge\)7/2 -> F(x)= 3x+5-2x+7
b) F(x)= 3/4 -> 3x+5- |2x-7| = 3/4
Nếu x<7/2 -> 3x+5 -7+2x=3/4
5x-2 = 3/4
x =11/20 (thõa mãn điều kiện x<7/2)
Nếu x\(\ge\)7/2 -> 3x+5-2x+7=3/4
x+12 =3/4
x =-45/4 (không thõa mãn điều kiên x\(\ge\)7/2
`@` `\text {Ans}`
`\downarrow`
\((6x-5)(x+8)-(3x-1)(2x+3)-9(4x-3)\)
`= 6x(x+8) - 5(x+8) - [ 3x(2x+3) - 2x - 3] - 36x + 27`
`= 6x^2 + 48x - 5x - 40 - (6x^2 + 9x - 2x - 3) - 36x + 27`
`= 6x^2 + 48x - 5x - 40 - (6x^2 + 7x - 3) - 36x + 27`
`= 6x^2 + 48x - 5x - 40 - 6x^2 - 7x + 3 - 36x + 27`
`= (6x^2 - 6x^2) + (48x - 5x - 7x - 36x) + (-40 + 3 + 27)`
`= 0 + 0 - 10`
`= - 10`
Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến