Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Phương trình hoành độ giao điểm là:
3x-2=x-3
\(\Leftrightarrow2x=-1\)
hay \(x=-\dfrac{1}{2}\)
Thay \(x=-\dfrac{1}{2}\) vào y=x-3, ta được:
\(y=-\dfrac{1}{2}-3=\dfrac{-7}{2}\)
1:
a:
b: PTHĐGĐ là:
x^2+2x-3=0
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
=>y=9 hoặc y=1
b. Đồ thị đt đề cho là y=6
PTGD 2 đt đầu bài với đt câu b là: \(\left\{{}\begin{matrix}2x=6\\x-1=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\rightarrow A\left(3;6\right)\\x=7\rightarrow B\left(7;6\right)\end{matrix}\right.\)
b: Phương trình hoành độ giao điểm là:
\(2x+2=\dfrac{-1}{2}x-2\)
\(\Leftrightarrow x\cdot\dfrac{5}{2}=-4\)
hay x=-10
Thay x=-10 vào (d1), ta được:
\(y=-20+2=-18\)
a:
b: tọa độ A là;
-x+5=4x và y=4x
=>x=1 và y=4
Tọa độ B là;
-x+5=-1/4x và y=-1/4x
=>-3/4x=-5 và y=-1/4x
=>x=5:3/4=5*4/3=20/3 và y=-1/4*20/3=-5/3
=>B(20/3;-5/3)
c: O(0;0); A(1;4); B(20/3;-5/3)
\(OA=\sqrt{1^2+4^2}=\sqrt{17}\)
\(OB=\sqrt{\left(\dfrac{20}{3}\right)^2+\left(-\dfrac{5}{3}\right)^2}=\dfrac{5\sqrt{17}}{3}\)
\(AB=\sqrt{\left(\dfrac{20}{3}-1\right)^2+\left(-\dfrac{5}{3}-4\right)^2}=\dfrac{\sqrt{818}}{3}\)
\(cosAOB=\dfrac{OA^2+OB^2-AB^2}{2\cdot OA\cdot OB}=\dfrac{-8}{17}\)
=>góc AOB tù
=>ΔOAB tù
Khi a = 2 thì ta có hàm số: y = x + 2
Khi a = 1,5 thì ta có hàm số: y = 0,5x + 1,5
*Vẽ đồ thị của hàm số y = x + 2
Cho x = 0 thì y = 2. Ta có: A(0; 2)
Cho y = 0 thì x = -2. Ta có: B(-2; 0)
Đường thẳng AB là đồ thị hàm số y = x + 2
*Vẽ đồ thị hàm số y = 0,5x + 1,5
Cho x = 0 thì y = 1,5. Ta có: C(0; 1,5)
Cho y = 0 thì x = -3. Ta có: D(-3; 0)
Đường thẳng CD là đồ thị hàm số y = 0,5x + 1,5.
*Tọa độ giao điểm của hai đường thẳng:
Gọi I( x 1 ; y 1 ) là tọa độ giao điểm của hai đường thẳng.
Ta có: I thuộc đường thẳng y = x + 2 nên y 1 = x 1 + 2
I thuộc đường thẳng y = 0,5x + 1,5 nên y 1 = 0,5 x 1 + 1,5
Suy ra: x 1 + 2 = 0,5 x 1 + 1,5 ⇔ 0,5 x 1 = -0,5 ⇔ x 1 = -1
x 1 = -1 ⇒ y 1 = -1 + 2 = 1
Vậy tọa độ giao điểm của hai đường thẳng là I(-1; 1)
Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}-2x+5=x+2\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)