Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tóm tắt :
R1//R2//R3
U=90V
R1=3R2=5R3
I = 6,3A
_______________________
I1=?; I2 =?; I3 =?
R2 =?; R2 =? ;R3= ?
GIẢI :
Điện trở tương đương toàn mạch là:
\(R_{tđ}=\frac{U}{I}=\frac{90}{6,3}=\frac{100}{7}\left(\Omega\right)\)
=> \(\frac{1}{R_{tđ}}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}\)
<=> \(\frac{7}{100}=\frac{1}{R_1}+\frac{1}{\frac{R_1}{3}}+\frac{1}{\frac{R_1}{5}}=\frac{1}{R_1}+\frac{3}{R_1}+\frac{5}{R_1}=\frac{1+3+5}{R_1}=\frac{9}{R_1}\)
<=> \(\frac{7}{100}=\frac{9}{R_1}\rightarrow R_1=\frac{9.100}{7}=\frac{900}{7}\Omega\approx129\Omega\)
=> \(\left\{{}\begin{matrix}R_2=\frac{129}{3}=43\left(\Omega\right)\\R_3=\frac{129}{5}=25,8\left(\Omega\right)\end{matrix}\right.\)
Vì R1//R2//R3 => U=U1=U2=U3 = 90V
=> \(\left\{{}\begin{matrix}I_1=\frac{90}{129}\approx0,7\left(A\right)\\I_2=\frac{90}{43}\approx2,1\left(A\right)\\I_3=\frac{90}{25,8}\approx3,5\left(A\right)\end{matrix}\right.\)
\(R_{tđ}=\frac{U}{I}=\frac{90}{6,3}=\frac{100}{7}\Omega\)
\(\Leftrightarrow\frac{1}{R_{tđ}}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}\)
\(\Leftrightarrow\frac{7}{100}=\frac{1}{R_1}+\frac{1}{\frac{R_1}{3}}+\frac{1}{\frac{R_1}{5}}\)
\(\Leftrightarrow\frac{7}{100}=\frac{1}{R_1}+\frac{3}{R_1}+\frac{5}{R_1}\)
\(\Leftrightarrow\frac{7}{100}=\frac{9}{R_1}\)
\(\Leftrightarrow R_1\approx129\Omega\)
Mà : R1=3R2=5R3
\(\Rightarrow R_2\approx\frac{129}{3}\approx43\Omega\)
\(R_3\approx\frac{129}{5}\approx25,8\Omega\)
Do \(R_1//R_2//R_3\Rightarrow U_1=U_2=U_3=U=90V\)
\(\Rightarrow I_1=\frac{U_1}{R_1}\approx\frac{90}{129}\approx0,7\left(A\right)\)
\(I_2=\frac{U_2}{R_2}\approx\frac{90}{43}\approx2,1\left(A\right)\)
\(I_3=\frac{U_3}{R_3}\approx\frac{90}{25,8}\approx3,5\left(A\right)\)
ý là thế này hả bn?
(R1ntR2)//(R3ntR4)
a,\(=>Rtd=\dfrac{\left(R1+R2\right)\left(R3+R4\right)}{R1+R2+R3+R4}=\dfrac{\left(10+15\right)\left(10+25\right)}{10+15+10+25}=\dfrac{175}{12}\left(om\right)\)
b,\(=>U12=U34=36V\)
\(=>I12=I1=I2=\dfrac{U12}{R12}=\dfrac{36}{10+15}=1,44A\)
\(=>I34=I3=I4=\dfrac{U34}{R34}=\dfrac{36}{10+25}=\dfrac{36}{35}A\)
Đáp án D
Giữa I 1 , I 2 , I 3 có mối liên hệ là I 2 = I 3 = I 1 / 2
Giải
a. Do \(R_1\)//\(R_2\) nên :
\(R_{12}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{20.20}{20+20}=10\Omega\)
\(R_3\) nt \(\left(R_1//R_2\right)\) nên điện trở tương đương là :
\(R_{tđ}=R_{12}+R_3=10+5=15\Omega\)
b. CĐDĐ qua mạch chính là :
\(I=\dfrac{U}{R}=\dfrac{15}{15}=1A\)
Vì \(R_{12}\) nt \(R_3\) nên :
\(I=I_3=I_{12}=1A\)
\(\Rightarrow U_{12}=I_{12}.R_{12}=1.10=10V\)
Vì \(R_1//R_2\) nên :
\(U_{12}=U_1=U_2=10V\)
CĐDĐ qua mỗi ĐT là :
\(I_1=\dfrac{U_1}{R_1}=\dfrac{10}{20}=0,5A\)
\(I_2=\dfrac{U_2}{R_2}=\dfrac{10}{20}=0,5A\)
a. \(\left\{{}\begin{matrix}R1=U1^2:P1=6^2:6=6\Omega\\R2=U2^2:P2=6^2:3=12\Omega\end{matrix}\right.\)
b. \(I=I1=I23=\dfrac{U1}{R1}=\dfrac{6}{6}=1A\left(R1ntR23\right)\)
\(U23=U2=U3=U-U1=12-\left(6.1\right)=6V\left(R2\backslash\backslash\mathbb{R}3\right)\)
\(I3=I23-I2=1-\left(\dfrac{6}{12}\right)=0,5A\)
\(\Rightarrow R3=\dfrac{U3}{I3}=\dfrac{6}{0,5}=12\Omega\)
c. \(\left\{{}\begin{matrix}P3=U3.I3=6.0,5=3W\\P=UI=12.1=12W\end{matrix}\right.\)
d. \(R3=p3\dfrac{l3}{S3}\Rightarrow l3=\dfrac{R3.S3}{p3}=\dfrac{30.0,2.10^{-6}}{0,40.10^{-6}}=15\left(m\right)\)
(R1 nt R2)//R3
\(\Rightarrow I=6A=I1+I3\Leftrightarrow3I3+I3=6\Leftrightarrow I3=1,5A\)
\(\Rightarrow I1=I2=I-I3=4,5A\)