Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dao động 1 vẽ với biên độ A và chu kì T
Dao động 2 có cùng chu kì với dao động 1 và biên độ \(A_2=2A\) vị trí đầu tiên của dao động thứ hai bằng \(\dfrac{\sqrt{2}}{2}A_2\) và ở thời điểm \(\dfrac{T}{8}\) thì dao động 2 sẽ đi qua vị trí cân bằng.
Cứ thế tiếp tục vẽ 2 chu kì dao động của hai dao động
Đường màu xanh là dao động thứ nhất, đường màu đỏ là dao động thứ 2
Hai dao động có cùng biên độ.
Ở cùng một thời điểm khi dao động 1 ở vị trí cân bằng thì dao động 2 ở vị trí bên và ngược lại.
a) Dao động 1 (đường màu xanh) có:
- Biên độ: A1 = 3 cm
- Chu kì: T = 6 s
- Tần số: \(f=\dfrac{1}{T}=\dfrac{1}{6}\left(Hz\right)\)
Dao động 2 (đường màu đỏ) có:
- Biên độ: A2 = 4 cm
- Chu kì: T = 6 s
- Tần số: \(f=\dfrac{1}{T}=\dfrac{1}{6}\left(Hz\right)\)
b) Hai dao động có cùng chu kì nên \(\omega=\dfrac{2\pi}{T}=\dfrac{2\pi}{6}=\dfrac{\pi}{3}\left(rad/s\right)\)
Độ lệch thời gian của hai dao động khi cùng trạng thái: \(\Delta t=2,5s\)
Độ lệch pha: \(\Delta\varphi=\omega.\Delta t=\dfrac{\pi}{3}\cdot2,5=150^o\)
c) Tại thời điểm 3,5 s vật 2 đang ở VTCB nên vận tốc cực đại:
\(v=\omega A_2=\text{ }\dfrac{\pi}{3}\cdot4=\dfrac{4\pi}{3}\left(cm/s\right)\)
d) Tại thời điểm 1,5 s vật 1 đang ở biên dương nên gia tốc có giá trị:
\(a=-\omega^2A_1=-\dfrac{\pi^2}{9}\cdot3=-\dfrac{\pi^2}{3}\left(cm/s^2\right)\)
Độ lớn gia tốc khi đó là \(\dfrac{\pi^2}{3}cm/s^2\)
a) Biên độ A = 15 (cm)
Chu kì T = 120 (ms) = 0,12 (s)
Tần số f = \(\frac{{25}}{3}\) (Hz)
Tần số góc ω = \(\frac{{2\pi }}{T}\) = \(\frac{{2\pi }}{{0,12}}\)= \(\frac{{50\pi }}{3}\) (rad/s)
Pha ban đầu φ = \( - \frac{\pi }{2}\)
b) Phương trình dao động của vật là: x = 15cos(\(\frac{{50\pi }}{3}\)t −\(\frac{\pi }{2}\)) (cm)
Chu kì dao động là: \(T=\dfrac{1}{f}=\dfrac{1}{5}=0,2\left(s\right)\)
Tần số góc của dao động là: \(\omega=2\pi f=10\pi\left(rad/s\right)\)
Lúc t = 0, ta có: \(\left\{{}\begin{matrix}x=A\\v=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}cos\varphi=1\\sin\varphi=0\end{matrix}\right.\Rightarrow\varphi=0\)
Phương trình dao động là: \(x=10cos\left(10\pi t\right)cm\)
Vẽ đồ thị:
- Từ đồ thị ta thấy:
Biên độ: \(A = 0,2\left( m \right) = 20\left( {cm} \right)\)
Chu kì: \(T = 0,4\left( s \right)\)
Tần số: \(f = \frac{1}{T} = \frac{1}{{0,4}} = 2,5\left( {Hz} \right)\)
- Tần số góc của dao động điều hoà: \(\omega = \frac{{2\pi }}{T} = \frac{{2\pi }}{{0,4}} = 5\pi \) (rad/s)
Từ đồ thị ta thấy lúc \(t = 0\) thì \(x = 0\) và đang đi về biên dương
\( \Rightarrow \left\{ \begin{array}{l}0 = A.\cos \varphi \\ - \omega A\sin \varphi > 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\cos \varphi = 0\\\sin \varphi < 0\end{array} \right. \Rightarrow \varphi = - \frac{\pi }{2}\)
Phương trình dao động điều hoà: \(x = 20\cos \left( {5\pi t - \frac{\pi }{2}} \right)\) cm.
+ Thời điểm vật có li độ \(x = 0\) là:
\(\begin{array}{l}20\cos \left( {5\pi t - \frac{\pi }{2}} \right) = 0 \Leftrightarrow \cos \left( {5\pi t - \frac{\pi }{2}} \right) = 0\\ \Rightarrow 5\pi t - \frac{\pi }{2} = \frac{\pi }{2} + k\pi \Rightarrow t = \frac{1}{5} + \frac{k}{5}\,\end{array}\)
với \(k = - 1,0,1,2....\)
+ Thời điểm vật có li độ \(x = 0,1m = 10cm\) là:
\(\begin{array}{l}20\cos \left( {5\pi t - \frac{\pi }{2}} \right) = 10 \Leftrightarrow \cos \left( {5\pi t - \frac{\pi }{2}} \right) = \frac{1}{2}\\ \Rightarrow \left\{ \begin{array}{l}5\pi t - \frac{\pi }{2} = \frac{\pi }{3} + k2\pi \\5\pi t - \frac{\pi }{2} = \frac{\pi }{3} + k2\pi \end{array} \right. \Rightarrow \left\{ \begin{array}{l}t = \frac{1}{6} + \frac{{2k}}{5}\,\left( {k = 0,1,2...} \right)\\t = \frac{{ - 1}}{{30}} + \frac{{2k}}{5}\left( {k = 0,1,2...} \right)\end{array} \right.\end{array}\)
Dao động thứ nhất là đường màu xanh, dao động thứ hai là đường màu đỏ
a) Cùng biên độ, chu kì của dao động thứ nhất bằng ba lần chu kì của dao động thứ hai.
b) Biên độ của dao động thứ nhất bằng hai lần biên độ của dao động thứ hai, cùng chu kì, cùng pha.
c) Cùng biên độ, cùng chu kì và có độ lệch pha là π rad.