K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

*Ta có: 0,5x + 0,25y = 0,15 ⇔ y = -2x + 0,6

Cho x = 0 thì y = 0,6 ⇒ (0; 0,6)

Cho y = 0 thì x = 0,3 ⇒ (0,3; 0)

*Ta có: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9⇔ y = 3x – 9

Cho x = 0 thì y = -9 ⇒ (0; -9)

Cho y = 0 thì x = 3 ⇒ (3; 0)

Hoành độ giao điểm của hai đường thẳng:

-2x + 0,6 = 3x – 9 ⇔ 5x = 9,6 ⇔ x = 1,92

Tung độ giao điểm của hai đường thẳng:

y = 3.1,92 – 9 = -3,24

Vậy tọa độ giao điểm của hai đường thẳng là (1,92; -3,24)

Đồ thị:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

16 tháng 6 2017

Hệ hai phương trình bậc nhất hai ẩn

29 tháng 1 2021

Hệ hai phương trình bậc nhất hai ẩn

23 tháng 4 2017

a) – Vẽ đường thẳng (1) qua gốc tọa độ O và điểm (1; 2)

-Vẽ đường thẳng (2) qua gốc tọa độ O và điểm (1; 0,5)

-Vẽ đường thẳng (3) qua hai điểm (0; 6) và (6; 0).

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Gọi A, B theo thứ tự là giao điểm của đường thẳng (3) với các đường thẳng (1) và (2), ta có:

- x + 6 = 2x => x = 2 => y = 4 => A(2; 4)

- x + 6 = 0,5x => x = 4 => y = 2 => B(4; 2)

Để học tốt Toán 9 | Giải bài tập Toán 9

23 tháng 4 2017

a) * Vẽ đồ thị hàm số y = 0,5x + 2 (1)

Cho x = 0, tính được y = 2 => D(0; 2) thuộc đồ thị.

Cho y = 0, 0 = 0,5.x + 2 => x = -4 => A(-4; 0) thuộc đồ thị. Đường thẳng vẽ qua A, D là đồ thị của (1).

*Vẽ đồ thị hàm số y = 5 – 2x (2)

-Cho x = 0 tính được y = 5 E(0; 5) thuộc đồ thị

-Cho y = 0, 0 = 5 – 2x => x = 2,5 => B(2,5; 0) thuộc đồ thị. Đường thẳng vẽ qua B, E là đồ thị của (2).

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ở câu a) ta tính được tọa độ của hai điểm A và B: A(-4; 0), B(2,5; 0)

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

23 tháng 4 2017

(đơn vị đo trên các trục tọa độ là xentimet)

Lời giải:

a) Vẽ đường thẳng qua O(0; 0) và điểm M(1; 1) được đồ thị hàm số y = x. Vẽ đường thẳng qua B(0; 2) và E(-1; 0) được đồ thị hàm số y = 2x + 2.

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Tìm tọa độ của điểm A: giải phương trình 2x + 2 = x, tìm được x = -2. Từ đó tìm được x = -2, từ đó tính được y = -2, ta có A(-2; -2).

c) Qua B(0; 2) vẽ đường thẳng song song với Ox, đường thẳng này có phương trình y = 2 và cắt đường thẳng y = x tại C.

5 tháng 1 2018

a) Đồ thị hàm số \(y=x\) là 1 đường thẳng đi qua 2 điểm O \(\left(0;0\right)\) và E\(\left(1;1\right)\)

Đồ thị hàm số \(y=2x+2\) là 1 đường thẳng đi qua 2 điểm B \(\left(0;2\right)\) và D \(\left(-1;0\right)\)

b) Hoành độ giao điểm A của 2 đường thẳng đã cho là nghiệm của pt:

\(x=2x+2\)

\(\Leftrightarrow\) \(x-2x=2\)

\(\Leftrightarrow\) \(-x=2\)

\(\Leftrightarrow\) \(x=-2\)

Tại \(x=-2\) thì giá trị của y là: \(y=2.\left(-2\right)+2=-2\)

Vậy tọa độ điểm A \(\left(-2;-2\right)\)

c) Đường thẳng song song với trục tung Ox và cắt trục hoành tại điểm B(0;2)

\(\Rightarrow\) Suy ra phương trình đường thẳng có dạng \(y=2x\)

Hoành độ giao điểm C của 2 đường thẳng y=2x và y=x là nghiệm của pt: 2x=x

\(\Rightarrow\) Tọa độ điểm C (2;2)

\(S_{ABC}=S_{ADO}+S_{BCOD}\)

30 tháng 5 2017

Hàm số bậc nhất

Từ đó ta có :

\(\widehat{AOK}=\widehat{OBK}\)

\(\widehat{OBK}+\widehat{KOB}=90^0\) nên \(\widehat{AOK}+\widehat{KOB}=90^0\)

23 tháng 4 2017

a) Đồ thị được vẽ như hình bên.

b) Giao của đường thẳng y = -x + 2 với Ox là B(2; 0).

Vì hai đường thẳng y = 0,5x + 2 và y = -x + 2 đều có tung độ gốc là 2 nên giao của chúng là C(0; 2).

Ta có tg A = 0,5. Suy ra ≈ 26034’.

Vì ∆BOC là tam giác vuông cân nên =450 .

Suy ra ≈ 1800 – (26034’ + 450) = 108026’.

c) Ta có AB = 6 (cm), AC = = 2√5 (cm), BC = 2√2 (cm).

Do đó chu vi của ∆ABC là 6 + 2√5 + 2√2 (cm).

Diện tích của ∆ABC là: AB . OC = . 6 . 2 = 6 (cm2).

23 tháng 4 2017

Bài giải:

a) Đồ thị được vẽ như hình bên.

b) Giao của đường thẳng y = -x + 2 với Ox là B(2; 0).

Vì hai đường thẳng y = 0,5x + 2 và y = -x + 2 đều có tung độ gốc là 2 nên giao của chúng là C(0; 2).

Ta có tg A = 0,5. Suy ra ≈ 26034’.

Vì ∆BOC là tam giác vuông cân nên =450 .

Suy ra ≈ 1800 – (26034’ + 450) = 108026’.

c) Ta có AB = 6 (cm), AC = = 2√5 (cm), BC = 2√2 (cm).

Do đó chu vi của ∆ABC là 6 + 2√5 + 2√2 (cm).

Diện tích của ∆ABC là: AB . OC = . 6 . 2 = 6 (cm2).