Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB=CD và AB//CD
=>AC vuông góc CD
b: ABCD là hình bình hành
=>AD//BC và AD=BC
Nè bạn, tam giác ABC có vuông ko vậy
Nếu vuông thì mình mới làm được nhé.
Nhớ kết bạn với mình đó nha!
Ta có :\(\Delta ABC\)cân tại \(A\)
\(=>\hept{\begin{cases}AB=AC\\ABC=ACB\end{cases}}\)
Lại có :\(BE=AB;CD=AC\)
Mà \(AB=AC=>BE=CD\)
\(=>BD+DE=EC+DE\)
\(=>BD=EC\)
Xét \(\Delta ABD\)và \(\Delta ACE\)
\(AB=AC\left(gt\right)\\ BD=EC\left(cmt\right)\\ ABC=ACB\left(gt\right)\)
\(=>\Delta ABD=\Delta ACE\left(c-g-c\right)\)
\(=>AD=AE\left(canh.tuong.ung\right)\)
\(=>\Delta ADE\)cân tại \(A\)
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
a: Xét ΔADB và ΔADE có
AD chung
góc BAD=góc EAD
AB=AE
=>ΔADB=ΔADE
=>góc ABD=góc AED
b: Xét ΔAEF vuông tại A và ΔABC vuông tại A có
AE=AB
góc AEF=góc ABC
=>ΔAEF=ΔABC
=>AC=AF
Sửa đề: Bỏ D là trung điểm của BC và bỏ luôn góc D vuông
a) Sửa đề: Chứng minh ΔABD=ΔACD
Xét ΔABD vuông tại D và ΔACD vuông tại D có
AB=AC(ΔABC đều)
AD chung
Do đó: ΔABD=ΔACD(cạnh huyền-cạnh góc vuông)
Suy ra: BD=CD(hai cạnh tương ứng)
b) Ta có: AB=BC(ΔABC đều)
mà BC=6cm(gt)
nên AB=6cm
Ta có: BD=CD(cmt)
mà BD+CD=BC(D nằm giữa B và C)
nên \(BD=CD=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:
\(AB^2=AD^2+BD^2\)
\(\Leftrightarrow AD^2=AB^2-BD^2=6^2-3^2=27\)
hay \(AD=3\sqrt{3}cm\)
Vậy: \(AD=3\sqrt{3}cm\)
c) Ta có: ΔABC đều(gt)
nên \(\widehat{C}=60^0\)
Ta có: BD=DC(cmt)
mà D nằm giữa B và C(gt)
nên D là trung điểm của BC
hay \(CD=\dfrac{BC}{2}\)(1)
Ta có: E là trung điểm của AC(gt)
nên \(CE=\dfrac{AC}{2}\)(2)
Ta có: ΔABC đều(gt)
nên BC=AC(3)
Từ (1), (2) và (3) suy ra CE=CD
Xét ΔCED có CE=CD(cmt)
nên ΔCED cân tại C(Định nghĩa tam giác cân)
Xét ΔCED cân tại C có \(\widehat{C}=60^0\)(cmt)
nên ΔCED đều(Dấu hiệu nhận biết tam giác đều)
d) Xét ΔCAB có
D là trung điểm của BC(cmt)
E là trung điểm của AC(gt)
Do đó: DE là đường trung bình của ΔCAB(Định nghĩa đường trung bình của tam giác)
hay DE//BA(Định lí 2 về đường trung bình của tam giác)
a) Xét tam giác vuông ECA và EDA có:
Cạnh EA chung
CA = DA (gt)
⇒ΔECA=ΔEDA(Cạnh huyền, cạnh góc vuông)
⇒ˆCAE=ˆDAE (Hai cạnh tương ứng)
Hya AE là phân giác góc CAB.
b) Theo câu a, ΔECA=ΔEDA⇒EC=ED
Ta có EC = ED; AC = AD nên AE là trung trực của CD.
c) Kẻ CH vuông góc AB.
Ta luôn có D nằm giữa B và H nên HD < HB
Vậy thì CD < CB (Quan hệ đường xiên hình chiếu)
d) Ta có I là trung điểm của CD; M là trung điểm của BC nên DM, BI là các đường trung tuyến của tam giác BCD.
Vậy G là trọng tâm hay CK cũng có trung tuyến.
Vậy K là trung điểm BD.