Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Oz là phân giác góc xOy nên góc xOz = góc yOz
mà góc xOz = góc BMO(2 góc so le trong của Ox // MB) ; góc yOz = góc AMO (2 góc so le trong của Oy // MA)
=> góc AMO = góc BMO . ΔOAM;ΔOBMcó góc AOM = góc BOM (cmt) ; chung cạnh OM ; góc AMO = góc BMO
=> ΔOAM=ΔOBM(g.c.g)=> OA = OB (2 cạnh tương ứng)
b) Từ gt ta có : ΔOHM,ΔOKMvuông tại H,K có góc HOM = góc KOM (cmt) ; chung cạnh OM
=> ΔOHM=ΔOKM(cạnh huyền - góc nhọn) => MH = MK (2 cạnh tương ứng)
Giả sử \(d\) là \(1\) đường thẳng bất kì và \(d'\) là đường thẳng nào đó vuông góc với \(d.\) Kí hiệu độ dài các hình chiếu của đoạn thẳng thứ \(i\)ên các đường thẳng \(d\)và \(d'\)là ai và bi tướng ứng.
Vì độ dài của mỗi đoạn thẳng bằng 1 nên ai + bi >1, với mọi i = 1, 2, ..., 4n
Do đó ( a1 + ... +a4n ) + ( b1 + ... +b4n ) \(\ge\)4n
Không mất tính tổng quát ta có thể giả sử a1 + ... +a4n \(\ge\) b1 + ... +b4n.
Theo nguyên lí Dirichet ta có: a1 + ... +a4n \(\ge\)2n
Vì tất cả các đoạn thẳng đều nằm trong hình tròn đường kính 2n nên tất cả chúng được chiếu xuống đoạn thẳng có độ dài 2n.
Nếu như các hình chiếu của các đoạn thẳng đã cho trên đường thẳng \(d\)không có điểm chung, thì sẽ có:
a1 + ... +a4n < 2n ( mâu thuẫn ! ) Do đó trên \(d\)phải có 1 điểm, hí hiệu là \(H\)là hình chiếu của ít nhất 2 điểm trên hai đoạn thẳng đã cho.
Đường vuông góc với \(d\)tại \(H\)( hoặc song song với \(d'\)và đi qua \(H\)) là đường thẳng cần tìm.
Giả sử dd là 11 đường thẳng bất kì và d'd′ là đường thẳng nào đó vuông góc với d.d. Kí hiệu độ dài các hình chiếu của đoạn thẳng thứ iiên các đường thẳng ddvà d'd′là ai và bi tướng ứng.
Vì độ dài của mỗi đoạn thẳng bằng 1 nên ai + bi >1, với mọi i = 1, 2, ..., 4n
Do đó ( a1 + ... +a4n ) + ( b1 + ... +b4n ) \ge≥4n
Không mất tính tổng quát ta có thể giả sử a1 + ... +a4n \ge≥ b1 + ... +b4n.
Theo nguyên lí Dirichet ta có: a1 + ... +a4n \ge≥2n
Vì tất cả các đoạn thẳng đều nằm trong hình tròn đường kính 2n nên tất cả chúng được chiếu xuống đoạn thẳng có độ dài 2n.
Nếu như các hình chiếu của các đoạn thẳng đã cho trên đường thẳng ddkhông có điểm chung, thì sẽ có:
a1 + ... +a4n < 2n ( mâu thuẫn ! ) Do đó trên ddphải có 1 điểm, hí hiệu là HHlà hình chiếu của ít nhất 2 điểm trên hai đoạn thẳng đã cho.
Đường vuông góc với ddtại HH( hoặc song song với d'd′và đi qua HH) là đường thẳng cần tìm.
Vì a // b => A = B ( Cặp góc so le trong bằng nhau )
Mà B = 90 độ
=> A = 90 độ
=> Đoạn thẳng đó vuông góc với đoạn thẳng còn lại .
Bn vẽ hình nhé!
Gọi 2 đường thẳng song song với nhau lần lượt là:a,b
đường thảng c vuông góc với a tại A
c cắt b tại B
Vì c vuông góc với a =>Ta được 4 góc:A1=A2=A3=A4=900
Vì c cắt b tại B => ta được 4 góc:B1=B2=B3=B4
Vì a||b =>A3=B3( 2 góc so le trong) =>B3=900 => c vuông góc với b
Vậy điều phải chứng minh.