Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án A
Chu kì dao động của vật:
T = 2 ( t 2 − t 1 ) = 1 , 5 s
v t b = 2 A Δ t ⇒ A = v t b Δ t 2 = 6 c m
Thời điểm t 1 = 1,75s ứng với góc
Δ φ = ω t 1 = 7 π 3 = 2 π + π 3 .
Giả sử thời điêm t 1 vật đang ở biên dương, sử dụng quay ngược lại trước đó 7 π / 3 rad ta xác định được thời điểm t 0 như hình vẽ. Từ đó ta suy ra:
x 0 v 0 = A 2 3 2 v max = 3 4 ω A 2 = 12 π 3
+) Chu kì T=0,5(s)
Thời điểm t=0 hoặc t=2s=4T thì vật ở cùng 1 vị trí và cùng 1 trạng thái
Tức là: tại t=0,vật có v>0 và \(a=-\omega^2x=80\pi^2\sqrt{2}\)
\(\Rightarrow x=-5\sqrt{2}=-\frac{A\sqrt{2}}{2}\)
+) Tại \(t=t_1=\frac{T}{8}\), vật ở li độ x=0, v>0
Tại \(t=t_2=\frac{T}{8}+\frac{T}{4}\), vật đi đến li độ x=A
Suy ra quãng đường vật đi được là: \(s=A\)
Tốc độ trung bình (đừng nhầm với vận tốc) của vật là:
\(\overline{v}=\frac{s}{\Delta t}=\frac{10}{0,1875-0,0625}=80\left(\frac{cm}{s}\right)\)
Chọn C
Đáp án A
+ Ta để ý rằng, trong dao động điều hòa thì li độ và vận tốc luôn vuông pha nhau
+ Hai thời điểm t 1 và t 2 vuông pha nhau do vậy v 2 sẽ ngược pha với x 1 , ta có v 2 x 1 = b x 1 = ω = π rad.
Tương tự, thời điểm t 3 ngược pha với t 2 nên ta có
v 3 v 2 = 1 ⇔ b + 8 π b = 1 ⇒ b + 8 π b = − 1 ⇒ b = − 4 π
Thay vào biểu thức trên ta tìm được x 1 = 4 cm
\(\omega=2\pi f=\pi; T=\frac{1}{f}=2\left(s\right)\)
\(t=2,5=T+\frac{T}{4}\)
\(A=\sqrt{x^2+\frac{v^2}{\omega^2}}=4\sqrt{2}\left(cm\right)\)
Suy ra, tại t1=0, vật đang ở li độ \(x=\frac{A\sqrt{2}}{2}\) theo chiều âm
Do đó, tại t=t2, vật đã đi được 1 quãng đường là: \(S=4A+A\sqrt{2}=8+16\sqrt{2}\left(cm\right)\)
Tốc độ trung bình là: \(\overline{v}=\frac{S}{t}=\frac{8+16\sqrt{2}}{2,5}\approx12,25\)
Chọn B