Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x^3+2^3\right)-x^3-2x=0\)
\(\Leftrightarrow8-2x=0\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\)
b)\(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x^2-4\right)=2\)
\(x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)
\(x^3-3x^2+3x-1-x^3-27+3x^2-12-2=0\)
\(3x-42=0\)
\(3x=42\)
\(x=14\)
- x2.(x3-x2+x-1)
- x.( x3-3x2-1)+3
- x.(x2-xy-y2)
Tìm x:
x3-16x = 0
=> x.(x2-16) = 0
=> x = 0 hay x2-16 = 0
=> x = 0 hay x2 = 0+16
=> x = 0 hay x2 = 16
=> x = 0 hay x = 4 hay x = -4
a) x^2 - 11x + 18 = 0
=> x^2 - 2x - 9x + 18 = 0
=> x ( x- 2 ) - 9 ( x- 2 ) = 0
=> ( x- 9 )( x- 2 )= 0
=> x- 9 = 0 hoặc x - 2 = 0
=> x= 9 hoặc x = 2
+) <=> \(x^3-3x^2+3x-1+3x^2+6x+8-x^3=17\)
<=>9x=10
<=> x=\(\frac{10}{9}\)
+) \(x\left(x^2-25\right)-x^3-8=3\)<=> \(x^3-x^3-25x=3+8\)
<=> x=\(-\frac{11}{25}\)
\(x^2+4x+3=0\)
\(x^2+x+3x+3=0\)
\(x\left(x+1\right)+3\left(x+1\right)=0\)
\(\left(x+1\right)\left(x+3\right)=0\)
\(\left[\begin{array}{nghiempt}x+1=0\\x+3=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=-1\\x=-3\end{array}\right.\)
\(4x^2+4x-3=0\)
\(4x^2-2x+6x-3=0\)
\(2x\left(2x-1\right)+3\left(2x-1\right)=0\)
\(\left(2x-1\right)\left(2x+3\right)=0\)
\(\left[\begin{array}{nghiempt}2x-1=0\\2x+3=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}2x=1\\2x=-3\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{1}{2}\\x=-\frac{3}{2}\end{array}\right.\)
\(x^2-x-12=0\)
\(x^2-4x+3x-12=0\)
\(x\left(x-4\right)+3\left(x-4\right)=0\)
\(\left(x-4\right)\left(x+3\right)=0\)
\(\left[\begin{array}{nghiempt}x-4=0\\x+3=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=4\\x=-3\end{array}\right.\)
\(x^2-25-\left(x-5\right)=0\)
\(\left(x-5\right)\left(x+5\right)-\left(x-5\right)=0\)
\(\left(x-5\right)\left(x+5-1\right)=0\)
\(\left(x-5\right)\left(x+4\right)=0\)
\(\left[\begin{array}{nghiempt}x-5=0\\x+4=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=5\\x=-4\end{array}\right.\)
\(x^2\left(x^2+1\right)-x^2-1=0\)
\(x^2\left(x^2+1\right)-\left(x^2+1\right)=0\)
\(\left(x^2+1\right)\left(x^2-1\right)=0\)
\(\left(x^2+1\right)\left(x-1\right)\left(x+1\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\x+1=0\end{array}\right.\) (vì \(x^2+1\ge1>0\))
\(\left[\begin{array}{nghiempt}x=1\\x=-1\end{array}\right.\)
3x^2-2x+1 3x^4-8x^3-10x^2+8x-5 x^2-2x-16/3 3x^4-2x^3+x^2 -6x^3-12x^2+8x-5 -6x^3+4x^2-2x -16x^2+10x-5 -16x^2+32/3x-16/3 -2/3x+1/3
Vậy
- (3x4-8x3-10x2+8x-5):(3x2-2x+1) = \(x^2-2x-\frac{16}{3}\)dư \(\frac{-2}{3}x+\frac{1}{3}\)
x^2-1 x^4-2x^3+2x-1 x^2-2x+1 x^4-x^2 -2x^3+x^2+2x-1 -2x^3+2x x^2-1 x^2-1 0
- x3-5x2 +8x-4=x3-x2-4x2+4x+4x-4=x2(x-1)-4x(x-1)+4(x-1)=(x-1)(x2-4x+4)+(x-1)(x-2)2 +> x=1:2
a, \(\left(x-15\right)\left(x+15\right)-\left(x+2\right)^2-\left(x-5\right)^2\)
\(=x^2-225-x^2-4x-4-x^2+10x-25\)
\(=-x^2+6x-254\)
b, \(\left(2x-1\right)\left(2x+1\right)+\left(x+9\right)^2-\left(x-3\right)^2\)
\(=4x^2-1+x^2+18x+81-x^2+6x-9=4x^2+24x+71\)
c, \(\left(7x-3\right)^2-\left(x-5\right)\left(x+5\right)-\left(2x+4\right)^2\)
\(=49x^2-42x+9-x^2+25-4x^2-16x-16=44x^2-58x+18\)
Trước khi xem lời giải bài toán này bạn nên xem qua video để hiểu cách biến đổi biểu thức 1 cách nhanh,gọn:Khai triển, rút gọn đa thức bằng máy tính casio . Bài này nhìn rồi mắt chứ rút gọn thì easy
a) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=0\Leftrightarrow-\left(2x-8\right)\) ( Dùng máy tính casio để biến đổi cho nhanh nha =))
\(\Leftrightarrow-2x+8=0\Leftrightarrow8-2x=0\Leftrightarrow2x=8\Leftrightarrow x=4\)
b) \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x^2-4\right)=2\)
\(\Leftrightarrow\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x^2-4\right)-2=0\)
\(\Leftrightarrow3x-42=0\Leftrightarrow3x=42\Leftrightarrow x=14\)