K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2016

\(x^2+4x+3=0\)

\(x^2+x+3x+3=0\)

\(x\left(x+1\right)+3\left(x+1\right)=0\)

\(\left(x+1\right)\left(x+3\right)=0\)

\(\left[\begin{array}{nghiempt}x+1=0\\x+3=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=-1\\x=-3\end{array}\right.\)

\(4x^2+4x-3=0\)

\(4x^2-2x+6x-3=0\)

\(2x\left(2x-1\right)+3\left(2x-1\right)=0\)

\(\left(2x-1\right)\left(2x+3\right)=0\)

\(\left[\begin{array}{nghiempt}2x-1=0\\2x+3=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}2x=1\\2x=-3\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=\frac{1}{2}\\x=-\frac{3}{2}\end{array}\right.\)

\(x^2-x-12=0\)

\(x^2-4x+3x-12=0\)

\(x\left(x-4\right)+3\left(x-4\right)=0\)

\(\left(x-4\right)\left(x+3\right)=0\)

\(\left[\begin{array}{nghiempt}x-4=0\\x+3=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=4\\x=-3\end{array}\right.\)

\(x^2-25-\left(x-5\right)=0\)

\(\left(x-5\right)\left(x+5\right)-\left(x-5\right)=0\)

\(\left(x-5\right)\left(x+5-1\right)=0\)

\(\left(x-5\right)\left(x+4\right)=0\)

\(\left[\begin{array}{nghiempt}x-5=0\\x+4=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=5\\x=-4\end{array}\right.\)

\(x^2\left(x^2+1\right)-x^2-1=0\)

\(x^2\left(x^2+1\right)-\left(x^2+1\right)=0\)

\(\left(x^2+1\right)\left(x^2-1\right)=0\)

\(\left(x^2+1\right)\left(x-1\right)\left(x+1\right)=0\)

\(\left[\begin{array}{nghiempt}x-1=0\\x+1=0\end{array}\right.\) (vì \(x^2+1\ge1>0\))

\(\left[\begin{array}{nghiempt}x=1\\x=-1\end{array}\right.\) 

 

 

 

 

 

 

13 tháng 1 2018

a, <=> (x-1)^2-4=0

<=> (x-1-2).(x-1+2)=0

<=> (x-3).(x+1)=0

<=> x-3=0 hoặc x+1=0

<=> x=3 hoặc x=-1

b, <=>  x^2-x+2x-2=0

<=> x^2+x-2=0

<=> (x^2-x)+(2x-2)=0

<=> (x-1).(x+2)=0

<=> x-1=0 hoặc x+2=0

<=> x=1 hoặc x=-2

c, <=> (2x+1)^2=x^2

<=> 2x+1=x hoặc 2x+1=-x

<=> x=-1 hoặc x=-1/3

d, <=> (x^2-2x)-(3x-6)=0

<=> (x-2).(x-3)=0

<=> x-2=0 hoặc x-3=0

<=> x=2 hoặc x=3

Tk mk nha

a,\(\left(x^2-2x+1\right)-4=0\)

\(\Leftrightarrow\left(x-1\right)^2-4=0\)

\(\Leftrightarrow\left(x-1-2\right)\left(x-1+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

9 tháng 8 2015

a) x^2 - 11x + 18 = 0 

=> x^2 - 2x - 9x + 18 = 0 

=> x ( x- 2 ) - 9 ( x- 2 ) = 0 

=> ( x- 9 )( x- 2 )= 0 

=> x- 9 = 0 hoặc x - 2 = 0 

=> x= 9 hoặc x = 2 

3 tháng 6 2017

a)1-6x2-x =0<=>-(6x2+x-1)=0<=>6x2+x-1=0

<=>(6x2+3x)-(2x+1)=0<=>3x(2x+1)-(2x+1)=0

<=>(3x-1)(2x+1)=0

=>3x-1=0 hoặc 2x+1=0=>x=\(\dfrac13\) hoặc x=-\(\dfrac12\)

Vậy S={\(\dfrac13\);-\(\dfrac12\)}

b)12x2+13x+3=0<=>12x2+9x+4x+3=0<=>(12x2+9x)+(4x+3)=0

<=>3x(4x+3)+(4x+3)=0<=>(3x+1)(4x+3)=0

=>3x+1=0 hoặc 4x+3=0 <=>x=-\(\dfrac13 \) hoặc x=-\(\dfrac34\)

Vậy S={-\(\dfrac13 \);-\(\dfrac34 \)}

c)x3-11x2+30x=0<=>x(x2-11x+30)=0<=>x[(x2-6x)-(5x-30)]=0

<=>x[x(x-6)-5(x-6)]=0<=>x(x-5)(x-6)=0

=>x=0 hoặc x-5=0 hoặc x-6=0=>x=0 hoặc x=5 hoặc x=6

Vậy S={0;5;6}

d)Ta có:(x2+x+1)(x2+x+2)-12=0

Đặt:t=x2+x+1

Khi đó:a(a+1)-12=0<=>a2+a-12=0<=>(a2+4a)-(3a+12)=0

<=>a(a+4)-3(a+4)=0<=>(a-3)(a+4)=0

hay (x2+x-2)(x2+x+5)=0

<=>(x-1)(x+2)(x2+x+5)=0(x2+x-2=(x-1)(x+2))

=>x-1=0 hoặc x+2=0(vì x2+x+5=(x+\(\dfrac12\))2+\(\dfrac{19}{4}\)>0)

=>x=1 hoặc x=-2

Vậy S={1;-2}

e)Ta có:2x2+x+6>x2+x+6=(x+\(\dfrac12\))2+\(\dfrac{23}{4}\)>0

nên PT vô nghiệm

Vậy S=\(\varnothing\)

17 tháng 2 2020

\(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}\)

\(\Leftrightarrow\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}=0\)

\(\Leftrightarrow\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}\right)=0\)

\(\Leftrightarrow x-23=0\left(vì\frac{1}{24}+\frac{1}{25}-\frac{1}{26}\ne0\right)\)

\(\Leftrightarrow x=23\)

vậy................

\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\)

\(\Leftrightarrow\left(\frac{201-x}{99}+1\right)+\left(\frac{203-x}{97}+1\right)+\left(\frac{205-x}{95}+1\right)=0\)

\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)

\(\Leftrightarrow300-x=0\left(vì\frac{1}{99}+\frac{1}{97}+\frac{1}{95}>0\right)\)

\(\Leftrightarrow x=300\)

vậy..........

9 tháng 3 2018

tôi bt làm 1 câu à mấy câu kia khó quá *-*

1. 5x2+4x-2=0

\(\Leftrightarrow x\left(5x+4\right)=2\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\5x+4=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{5}\end{cases}}}\)

\(\Rightarrow\) Nghiệm pt là :\(S=\left\{\frac{-2}{5};2\right\}\)

chúc bn sớm làm dc bài này ha

Bài 2: Vượt chướng ngại vậtCâu 2.1:Rút gọn biểu thức (x + y + z)2 - x2 - y2 - z2 ta được:a. −2(xy + yz + zx)b. 0c. xy + yz + zxd. 2(xy + yz + zx)Câu 2.2:Số giá trị nguyên của x để biểu thức  đạt giá trị nguyên là:a. 8b. 4c. 5d. 6Câu 2.3:Rút gọn biểu thức  ta được:a. a - 1/ab. (a + 1)/ac. (a - 1)/ad. a + 1/aCâu 2.4:Số nghiệm của phương trình:  là:a. 3b. 0c. 1d. 2Câu 2.5:Cho tam giác ABC vuông cân tại C. M...
Đọc tiếp

Bài 2: Vượt chướng ngại vật

Câu 2.1:
Rút gọn biểu thức (x + y + z)2 - x- y- zta được:

  • a. −2(xy + yz + zx)
  • b. 0
  • c. xy + yz + zx
  • d. 2(xy + yz + zx)

Câu 2.2:

Số giá trị nguyên của x để biểu thức  đạt giá trị nguyên là:

  • a. 8
  • b. 4
  • c. 5
  • d. 6

Câu 2.3:

Rút gọn biểu thức  ta được:

  • a. a - 1/a
  • b. (a + 1)/a
  • c. (a - 1)/a
  • d. a + 1/a

Câu 2.4:

Số nghiệm của phương trình:  là:

  • a. 3
  • b. 0
  • c. 1
  • d. 2

Câu 2.5:

Cho tam giác ABC vuông cân tại C. M là một điểm trên cạnh AB. Kẻ MI vuông góc với AC, MK vuông góc với BC. Gọi O là trung điểm của AB. Khi đó OIK là tam giác gì?

  • a. Cân tại O
  • b. Vuông cân tại O
  • c. Vuông tại O
  • d. Vuông cân tại K

Bài 3: Đỉnh núi trí tuệ

Câu 3.1:
Phân tích đa thức 8x- 2 thành nhân tử ta được:

  • a. 2(4x - 1)(4x + 1)
  • b. 2(2x - 1)(2x + 1)
  • c. (2x - 1)(2x + 1)
  • d. 2(x - 1)(4x + 1)

Câu 3.2:

Thực hiện phép tính 5xvới 4x- 2x + 5 ta được:

  • a. 20x- 10x + 25x2
  • b. 20x- 10x3 + 25
  • c. 20x+ 10x3 + 25x2
  • d. 20x- 10x3 + 25x2

Câu 3.3:

Điều kiện xác định của biểu thức:   là:

  • a. x ≠ ± 3/2
  • b. x ≠ 1,5
  • c. x ≠ ± 2/3
  • d. x ≠ -1,5

Câu 3.4:

Giá trị của biểu thức   tại x = 3 là:

  • a. -1
  • b. 1
  • c. 2
  • d. -2

Câu 3.5:

Số giá trị của x để phân thức  có giá trị bằng 2 là:

  • a. 1
  • b. 3
  • c. 2
  • d. 0

Câu 3.6:

Cho biểu thức 
Giá trị của biểu thức P tại x thỏa mãn x2 - 6x + 9 = 0 là:

  • a. -15
  • b. 15
  • c. 5
  • d. -5

Câu 3.7:

Để P = x+ x- 11x + m chia hết cho Q = x - 2 thì khi đó:

  • a. m = 10
  • b. m = 12
  • c. m = -10
  • d. m = 22

Câu 3.8:

Giá trị của biểu thức A = 20- 19+ 18- 17+ ...... + 2- 1là:

  • a. 120
  • b. 102
  • c. 201
  • d. 210

Câu 3.9:

Giá trị lớn nhất của biểu thức  là:

  • a. 3
  • b. 2
  • c. 6
  • d. 4

Câu 3.10:

Biết b ≠ ± 3a và 6a- 15ab + 5b= 0
Khi đó giá trị của biểu thức  là:

  • a. 0
  • b. 2
  • c. 1
  • d. 3   .

đây là bài của chị mk gúp mình với mk tick cho

 

0
1 tháng 10 2016

1/ x² - 5x + 6 = 0 
⇔ x² - 2x - 3x + 6 = 0 
⇔ x(x - 2) - 3(x - 2) = 0 
⇔ (x - 2)(x - 3) = 0 
⇒S = {2 ; 3}.

1 tháng 10 2016

1) \(x^2+5x+6=0\)

\(\Leftrightarrow x^2+2x+3x+6=0\)

\(\Leftrightarrow x\left(x+2\right)+3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=-3\end{array}\right.\)

2) \(2\left(x+3\right)-x^2-3x=0\)

\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(2-x\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+3=0\\2-x=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=2\end{array}\right.\)

3) \(x^2+4x+3=0\)

\(\Leftrightarrow x^2+x+3x+3=0\)

\(\Leftrightarrow x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=-3\end{array}\right.\)

4) \(2x^2-3x-5=0\)

\(\Leftrightarrow2x^2+2x-5x-5=0\)

\(\Leftrightarrow2x\left(x+1\right)-5\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\2x-5=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=\frac{5}{2}\end{array}\right.\)