Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\)
\(a.=3\left(x+2\right)\)
\(b.=4\left(x-y\right)+x\left(x-y\right)\)
\(=\left(4+x\right)\left(x-y\right)\)
\(c.=\left(x-6\right)\left(x+6\right)\)
\(d.=\left(x^2-2y^2\right)\left(x^2+2y^2\right)\)
\(2.\)
\(a.ĐKXĐ:\)\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)
\(b.A=\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{3}{x+1}với\)\(x\ne\pm1\)
\(c.A=-1\Leftrightarrow\frac{3}{x+1}=-1\)
\(\Rightarrow\left(x+1\right).-1=3\)
\(-x-1=3\)
\(-x=4\)
\(\Rightarrow x=4\left(t/mđk\right)\)
\(d.\)Để \(x\in Z,A\in Z\Leftrightarrow x+1\inƯ\left(3\right)\)
\(Ư\left(3\right)\in\left\{\pm1,\pm3\right\}\)
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
Vậy \(x\in\left\{0,-2,2,-4\right\}\)
1a) 3x + 6 = 3 (x + 2)
b) 4x - 4y + x2 - xy = (4x - 4y) + (x2 - xy) = 4 (x - y) + x (x - y) = (4 + x) (x - y)
c) x2 - 36 = x2 - 62 = (x + 6) (x - 6)
2a) phân thức A được xác định khi \(x^2-1\ne0\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\ne0\)
\(\Rightarrow x+1\ne0..và..x-1\ne0\)
\(x\ne-1..và..x\ne1\)
b) \(A=\frac{3x-3}{x^2-1}=\frac{3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{3}{x+1}\)
c) \(A=-1\Rightarrow\frac{3}{x+1}=-1\)
\(\Rightarrow x+1=-3\)
\(x=-4\left(TM\text{Đ}K\right)\)
Vậy x = -1 thì A = -1
#Học tốt!!!
~NTTH~
1. A = -4 phần x+2
2. 2x^2 + x = 0 => x = 0 hoặc x = -1/2
Với x = 0 thì A = -2
Với x = -1/2 thì A = -8/3
3. A = 1/2 => -4 phần x + 2 = 1/2
<=> -8 = x + 2
<=> x = -10
4. A nguyên dương => A > 0
=> -4 phần x + 2 > 0
Do -4 < 0 nên -4 phần x + 2 > 0 khi x + 2 < 0
=> x < -2
Cho biểu thức
A= (\( {1 \over x-2}\)+\({1 \over x+2}\)) : \( {5-x \over x-2}\)
a) Tìm ĐKXĐ
b) Rút gọn A
a) ĐKXĐ: \(x\ne-2;x\ne2\), rút gọn:
\(A=\left[\frac{3\left(x-2\right)-2x\left(x+2\right)+2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right]\div\frac{2x-1}{4\left(x-2\right)}\)
\(A=\frac{3x-6-2x^2-4x+4x^2+6}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{4\left(x-2\right)}{2x-1}=\frac{4\left(2x^2-x\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4x\left(2x-1\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4}{x+2}\)
b) Ta có: \(\left|x-1\right|=3\Leftrightarrow\hept{\begin{cases}x-1=3\\x-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(n\right)\\x=-2\left(l\right)\end{cases}}}\)
=> Khi \(x=4\)thì \(A=\frac{4}{4+2}=\frac{4}{6}=\frac{2}{3}\)
c) \(A< 2\Leftrightarrow\frac{4}{x+2}< 2\Leftrightarrow4< 2x+4\Leftrightarrow0< 2x\Leftrightarrow x>0\)Vậy \(A< 2,\forall x>0\)
d) \(\left|A\right|=1\Leftrightarrow\left|\frac{4}{x+2}\right|=1\Leftrightarrow\hept{\begin{cases}\frac{4}{x+2}=1\\\frac{4}{x+2}=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\left(l\right)\\x=-6\left(n\right)\end{cases}}}\)Vậy \(\left|A\right|=1\)khi và chỉ khi x = -6
Bạn gõ lại biểu thức đi