Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(x) = (x^2-1)+(x+1).(x-1)
= [(x^2-x)+(x-1)]+(x+1).(x-1)
= (x-1).(x+1)+(x+1).(x-1)
= 2.(x-1).(x+1)
Tk mk nha
\(ĐKXĐ:x\ne\pm\frac{3}{2};x\ne1;x\ne0\)
\(A=\left(\frac{2+3x}{2-3x}-\frac{36x^2}{9x^2-4}-\frac{2-3x}{2+3x}\right):\frac{x^2-x}{2x^2-3x^3}\)
\(=\left[\frac{\left(2+3x\right)^2}{\left(2+3x\right)\left(2-3x\right)}+\frac{36x^2}{\left(2-3x\right)\left(2+3x\right)}-\frac{\left(2-3x\right)^2}{\left(2-3x\right)\left(2+3x\right)}\right]:\frac{x\left(x-1\right)}{x^2\left(2-3x\right)}\)
\(=\frac{4+12x+9x^2+36x^2-4+12x-9x^2}{\left(2+3x\right)\left(2-3x\right)}\cdot\frac{x\left(2-3x\right)}{x-1}\)
\(=\frac{36x^2+24x}{\left(2+3x\right)\left(2-3x\right)}\cdot\frac{x\left(2-3x\right)}{x-1}\)
\(=\frac{12x\left(3x+2\right)}{2+3x}\cdot\frac{x}{x-1}\)
\(=\frac{12x^2}{x-1}\)
Để A nguyên dương hay \(\frac{12x^2}{x-1}\) nguyên dương
Mà \(12x^2\ge0\Rightarrow x-1>0\Rightarrow x>1\)
Vậy để A nguyên dương thì x là số nguyên dương lớn hơn 1.
- x2.(x3-x2+x-1)
- x.( x3-3x2-1)+3
- x.(x2-xy-y2)
Tìm x:
x3-16x = 0
=> x.(x2-16) = 0
=> x = 0 hay x2-16 = 0
=> x = 0 hay x2 = 0+16
=> x = 0 hay x2 = 16
=> x = 0 hay x = 4 hay x = -4
x4+x=x(x3+1)=x(x+1)(x2-x+1)
x4+64=x4+16x2+64-16x2=(x2+8)2-(4x)2=(x2+8+4x)(x2+8-4x)
4x4+81=4x4+36x2+81-36x2=(2x2+9)2-(6x)2=(2x2+9+6x)(2x2+9-6x)
64x4+y4=64x4+16(xy)2+y4-16(xy)2=(8x2+y2)-(4xy)2=(8x2+y2-4xy)(8x2+y2=4xy)
x4+4y4=x4+4(xy)2+4y4-4(xy)2=(x2+2y2-2xy)(x2+2y2+2xy)
x4+x2+1=(x4+2x2+1)-x2=(x2+1-x)(x2+1+x)
Mình làm có vài đoạn hơi tắt nha.
\(A=x^2-y^2-x+y\)
\(=\left(x^2-y^2\right)-\left(x-y\right)\)
\(=\left(x+y\right)\left(x-y\right)-\left(x-y\right)\)
\(=\left(x+y-1\right)\left(x-y\right)\)
\(B=ax-ab+b-x\)
\(=\left(ax-ab\right)-\left(x-b\right)\)
\(=a\left(x-b\right)-\left(x-b\right)\)
\(=\left(a-1\right)\left(x-b\right)\)
\(D=x^2-2xy+y^2-m^2+2mn-n^2\)
\(=\left(x^2+y^2-2xy\right)-\left(m^2+n^2-2mn\right)\)
\(=\left(x-y\right)^2-\left(m-n\right)^2\)
\(=\left(x-y-m+n\right)\left(x-y+m-n\right)\)
\(E=x^2-y^2-2yz-z^2\)
\(=x^2-\left(y^2+z^2+2yz\right)\)
\(=x^2-\left(y-z\right)^2\)
\(=\left(x+y-z\right)\left(z-y+z\right)\)
\(=>A=\left(x-y\right)\left(x+y\right)-\left(x-y\right)\\ =>A=\left(x-y\right)\left(x+y-1\right)\) ( dấu phía sau bị lỗi nha )
\(=>B=a\left(x-b\right)-\left(x-b\right)\\ =>B=\left(x-b\right)\left(a-1\right)\)
\(=>C=\left(a+b+c\right)\left(3x^2+36xy+108y^2\right)\)
\(=>C=3\left(a+b+c\right)\left(x^2+12xy+36y^2\right)\\ =>C=3\left(a+b+c\right)\left(x+6y\right)^2\)
\(\Rightarrow D=\left(x-y\right)^2-\left(m^2-2mn+n^2\right)\\ =>D=\left(x-y\right)^2-\left(m-n\right)^2\)
\(=>D=\left(x-y+m-n\right)\left(x-y-m+n\right)\)
\(=>E=x^2-\left(y^2+2yz+z^2\right)\\ =>E=x^2-\left(y+z\right)^2\)
\(=>E=\left(x-y-z\right)\left(x+y+z\right)\)
T I C K ủng hộ nha
CHÚC BẠN HỌC TỐT
\(1.\)
\(a.=3\left(x+2\right)\)
\(b.=4\left(x-y\right)+x\left(x-y\right)\)
\(=\left(4+x\right)\left(x-y\right)\)
\(c.=\left(x-6\right)\left(x+6\right)\)
\(d.=\left(x^2-2y^2\right)\left(x^2+2y^2\right)\)
\(2.\)
\(a.ĐKXĐ:\)\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)
\(b.A=\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{3}{x+1}với\)\(x\ne\pm1\)
\(c.A=-1\Leftrightarrow\frac{3}{x+1}=-1\)
\(\Rightarrow\left(x+1\right).-1=3\)
\(-x-1=3\)
\(-x=4\)
\(\Rightarrow x=4\left(t/mđk\right)\)
\(d.\)Để \(x\in Z,A\in Z\Leftrightarrow x+1\inƯ\left(3\right)\)
\(Ư\left(3\right)\in\left\{\pm1,\pm3\right\}\)
Vậy \(x\in\left\{0,-2,2,-4\right\}\)
1a) 3x + 6 = 3 (x + 2)
b) 4x - 4y + x2 - xy = (4x - 4y) + (x2 - xy) = 4 (x - y) + x (x - y) = (4 + x) (x - y)
c) x2 - 36 = x2 - 62 = (x + 6) (x - 6)
2a) phân thức A được xác định khi \(x^2-1\ne0\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\ne0\)
\(\Rightarrow x+1\ne0..và..x-1\ne0\)
\(x\ne-1..và..x\ne1\)
b) \(A=\frac{3x-3}{x^2-1}=\frac{3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{3}{x+1}\)
c) \(A=-1\Rightarrow\frac{3}{x+1}=-1\)
\(\Rightarrow x+1=-3\)
\(x=-4\left(TM\text{Đ}K\right)\)
Vậy x = -1 thì A = -1
#Học tốt!!!
~NTTH~