Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét △ABC có AN = NC
BM = MC
\(\Rightarrow\)MN là đường trung bình của △ABC
\(\Rightarrow\)MN // AB và bằng \(\frac{1}{2}\)độ dài AB (1)
\(\Rightarrow\)MN = 3 cm
Xét △GAB có : DA = DG
EB = EG
\(\Rightarrow\)DE là đường trung bình của △GAB
\(\Rightarrow\)DE // AB và bằng \(\frac{1}{2}\)độ dài AB (2)
\(\Rightarrow\)DE = 3 cm
Vậy MN = DE = 3 cm
b) C1 :
Từ (1) và (2)
\(\Rightarrow\)MN // DE và MN = DE
\(\Rightarrow\)Tứ giác DEMN là hình bình hành
C2 :
Vì AM là đương trung tuyến của △ABC
\(\Rightarrow\hept{\begin{cases}AG=\frac{2}{3}AM\\GM=\frac{1}{3}AM\end{cases}}\)
Mà DA = DG = \(\frac{1}{2}\)AG
\(\Rightarrow\)DG = \(\frac{1}{3}\)AM
\(\Rightarrow\)DG = GM (3)
Chứng minh tương tự : EG = GN (4)
Từ (3) và (4) suy ra :
Tứ giác DEMN có 2 đường chéo cắt nhau tại trung điểm của mỗi đường
\(\Rightarrow\)Tứ giác DEMN là hình bình hành.
E gửi nhầm câu hỏi ạ ! Bạn nào cần giải bài này vào câu hỏi tương tự nhé, trong đó em giải rồi
a) Tứ giác ABDC có hai đường chéo cắt nhau tại trung điểm mỗi đường ⇒ ABDC là hình bình hành
Hình bình hành ABDC có hai đường chéo bằng nhau ⇒ ABDC là hình chữ nhật
b) ABDC là hình chữ nhật ⇒ góc BAC = 90o
⇒ ΔABC là tam giác vuông tại A
c) Định lí: Tam giác có đường trung tuyến ứng với một cạnh bằng nửa cạnh đó thì tam giác đó là tam giác vuông
a: Đề thiếu số đo rồi bạn
b: Xét ΔABC có
N,M lần lượt là trung điểm của AB,AC
=>NM là đường trung bình của ΔABC
=>NM//BC và \(NM=\dfrac{BC}{2}\)
Xét ΔGBC có
I,K lần lượt là trung điểm của GB,GC
=>IK là đường trung bình của ΔGBC
=>IK//BC và \(IK=\dfrac{BC}{2}\)
IK//BC
NM//BC
Do đó: IK//MN
\(IK=\dfrac{BC}{2}\)
\(MN=\dfrac{CB}{2}\)
Do đó: IK=MN
Xét tứ giác NMKI có
NM//KI
NM=KI
Do đó: NMKI là hình bình hành
a) Xét tam giác ABC có:
\(DC=\dfrac{1}{2}AC\) (BD là đường trung tuyến)
\(EB=\dfrac{1}{2}AB\)(CE là đường trung tuyến)
Mà \(AB=AC\)(tam giác ABC là tam giác đều)
=> DC=EB
Xét ΔEBC và ΔDCB có:
DC=EB(cmt)
\(\widehat{EBC}=\widehat{DCB}=60^0\)
BC chung
=> ΔEBC=ΔDCB(c.g.c)
=> EC=DB(2 cạnh tương ứng)
Xét tam giác ABC có:
D là trung điểm AC(BD là đường trung tuyến)
E là trung điểm AB(CE là đường trung tuyến)
=> DE là đường trung bình ΔABC
=> DE//BC
=> Tứ giác BEDC là hình thang
Mà EC=BD(cmt)
=> Tứ giác BEDC là hình thang cân
b) Ta có: DE là đường trung bình của tam giác ABC
\(\Rightarrow DE=\dfrac{1}{2}BC=\dfrac{1}{2}.6=3\left(cm\right)\)(tính chất đường trung bình)
Ta có: \(BE=DC=\dfrac{1}{2}AB=\dfrac{1}{2}AC=\dfrac{1}{2}.6=3\left(cm\right)\)(do CE và BD là đường trung tuyên tam giác ABC)
\(P_{BEDC}=DE+EB+DC+BC=3+3+3+6=15\left(cm\right)\)
a: Xét tứ giác AEBM có
D là trung điểm của AB
D là trung điểm của EM
Do đó: AEBM là hình bình hành
mà \(\widehat{AEB}=90^0\)
nên AEBM là hình chữ nhật
a: Xét ΔCAB có CE/CA=CM/CB
nên ME//ABvà ME=AB/2
=>ME//AD và ME=AD
=>ADME là hình bình hành
mà góc DAE=90 độ
nên ADME là hình chữ nhật
b: ADME là hình chữ nhật
=>AM=DE
c: BC=15cm
=>AM=15/2=7,5cm
=>DE=7,5cm
d: Xét tứ giác AMCF có
E là trung điểm chung của AC và MF
MA=MC
Do đó: AMCF là hình thoi
a: Xét tứ giác ANMC có
MN//AC
MN=AC
Do đó: ANMC là hình bình hành
b: Xét tứ giác ADBK có
E là trung điểm của AB
E là trung điểm của DK
Do đó: ADBK là hình bình hành
mà DA=DB
nên ADBK là hình thoi
a, Vì A là trung điểm của FD \(\Rightarrow FA=AD=\frac{FD}{2}\)(1)
Vì B là trung điểm của ED \(\Rightarrow BE=BD=\frac{ED}{2}\)(2)
Từ (1), (2)
\(\Rightarrow\frac{FA}{AD}=\frac{EB}{BD}=1\)
Ta có \(\frac{FA}{AD}=\frac{EB}{BD},A\in FD,B\in ED\)nên theo định lí đảo Thales \(\Rightarrow AB//EF\)
\(\Rightarrow\)Tứ giác ABEF là hình thang.
b, Xét \(\Delta DEF\)có A là trung điểm của DF, B là trung điểm của ED
\(\Rightarrow\)AB là trung bình của\(\Delta DÈF\)
\(\Rightarrow\frac{EF}{2}=AB\Rightarrow AB=3\)
Trong cách sử dụng thông thường, tuyến tính được dùng để nói lên một mối quan hệ toán học hoặc hàm có thể được biểu diễn trên đồ thị là một đường thẳng, như trong hai đại lượng tỉ lệ thuận với nhau, chẳng hạn như điện áp và dòng điện trong một mạch RLC, hoặc khối lượng và trọng lượng của một vật.
tuyến tính được dùng để nói lên một mối quan hệ toán học hoặc hàm có thể được biểu diễn trên đồ thị là một đường thẳng, như trong hai đại lượng tỉ lệ thuận với nhau, chẳng hạn như điện áp và dòng điện trong một mạch RLC, hoặc khối lượng và trọng lượng của một vật.
mạng ă