Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Số cách đi từ A đến B là 4, số cách đi từ B đến C là 2, số cách đi từ C đến D là 3.
Số cách đi từ A đến D mà qua B và C chỉ một lần là: 4.2.3 = 24 (cách)
Đáp án B
Nhiệt độ trung bình của thành phố Hà Nội từ 6h đến 18h là
Đáp án A
Phương pháp:
Trải 4 mặt của hình chóp ra mặt phẳng và tìm điều kiện để A M + M N + N P + P Q là nhỏ nhất.
Cách giải:
Ta “xếp” 4 mặt của hình chóp lên một mặt phẳng, được như hình bên:
Như hình vẽ ta tháy, để tiết kiệm dây nhất thì các đoạn AM, MN, NP, PQ phải tạo thành một đoạn thẳng AQ.
Lúc này, xét Δ S A Q có:
A S M = M S N = N S P = P S Q = 15 °
S A = 600 m , S Q = 300 m
⇒ k = A M + M N N P + P Q = A N N Q = S A S Q = 2
(Vì A N N Q = S A S Q do tính chất của đường phân giác SN).
Đáp án C.
Các cách đi: A → B → D : 10 . 6 = 60 cách.
A → C → D : 9 . 11 = 99 cách.
Vậy tất cả có 159 cách đi từ A đến D.