K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2021

a) Vì MA,MB là tiếp tuyến \(\Rightarrow MA=MB\) và MO là phân giác \(\angle AMB\Rightarrow\Delta MAB\) cân tại M \(\Rightarrow OM\bot AB\)

Xét \(\Delta IAC\) và \(\Delta IBA:\) Ta có: \(\left\{{}\begin{matrix}\angle IAC=\angle IBA\\\angle BIAchung\end{matrix}\right.\)

\(\Rightarrow\Delta IAC\sim\Delta IBA\left(g-g\right)\Rightarrow\dfrac{IA}{IB}=\dfrac{IC}{IA}\Rightarrow IA^2=IB.IC\)

b) Vì \(IA=IM\Rightarrow IM^2=IB.IC\Rightarrow\dfrac{IM}{IB}=\dfrac{IC}{IM}\) 

Xét \(\Delta IMC\) và \(\Delta IBM:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{IM}{IB}=\dfrac{IC}{IM}\\\angle BIMchung\end{matrix}\right.\)

\(\Rightarrow\Delta IMC\sim\Delta IBM\left(c-g-c\right)\Rightarrow\angle IMC=\angle IBM=\angle BDC\)

undefined

5 tháng 6 2021

thêm câu kết luận giùm mình nhé,mình quên mất

 

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

a: ΔOBC cân tại O

mà OH là đường cao

nên H là trung điểm của BC và OH là phân giác của góc BOC

=>HB=HC

b: Xét ΔMBC có

MH vừa là đường cao, vừa là đường trung tuyến

=>ΔMBC cân tại M

Xét ΔOBM  và ΔOCM có

OB=OC

góc BOM=góc COM

OM chung

Do đó: ΔOBM=ΔOCM

=>góc OCM=góc OBM=90 độ

=>OC vuông góc CM

c: ΔOMB vuông tại B

=>OB^2+BM^2=OM^2

=>BM=R*căn 3

\(S_{OBM}=\dfrac{1}{2}\cdot OB\cdot BM=\dfrac{1}{2}\cdot R\cdot R\sqrt{3}=\dfrac{R^2\sqrt{3}}{2}\)

\(S_{OCM}=\dfrac{1}{2}\cdot OC\cdot CM=\dfrac{R^2\sqrt{3}}{2}\)

=>\(S_{OBMC}=2\cdot\dfrac{R^2\sqrt{3}}{2}=R^2\sqrt{3}\)

a: Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2=R^2\)