Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O A T C B H
a) Ta có \(\widehat{BTA}=\widehat{TCB}\)( góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung \(\widebat{TB}\))
\(\Delta ABT\infty\Delta ATC\)(g.g) => \(\frac{AT}{AC}=\frac{AB}{AT}\)=> \(AT^2=AB.AC\)(đpcm)
Còn câu b và c có ai giúp mình giải kg
b) Do AT là tiếp tuyến của (O) nên AT vuông góc với OT => ^OAT=90
xét tam giác OAT vuông có OH là đường cao nên ta có AT^2=AO.AH (2)
từ câu a) ta có AT^2=AB.AC (1)
Từ (1) và (2) suy ra "ĐPCM"
c) từ kết quả của câu b)=> AB/AO = AH/AC
Xét 2 tam giác ABO và AHC có ^OAC chung ; AB/AO = AH/AC
suy ra tam giác ABO đồng dạng tam giác AHC => ^AOB = ^ACH hay ^HOB = ^BCH => OHBC nội tiếp đường tròn
a) Hai tam giác vuông ABO và ACO có chung cạnh huyền AO nên A, B, O, C cùng thuộc đường tròn đường kính AO.
Vậy tứ giác ABOC là tứ giác nội tiếp.
b) Ta thấy ngay \(\Delta ABD\sim\Delta AEB\left(g-g\right)\)
\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AE.AD=AB^2\)
Xét tam giác vuông ABO có BH là đường cao nên áp dụng hệ thức lượng ta có:
\(AH.AO=AB^2\)
Suy ra AD.AE = AH.AO
c) Ta có \(\widehat{PIK}+\widehat{IKQ}+\widehat{P}+\widehat{Q}=360^o\)
\(\Rightarrow2\left(\widehat{PIO}+\widehat{P}+\widehat{OKQ}\right)=360^o\)
\(\Rightarrow\widehat{PIO}+\widehat{P}+\widehat{OKQ}=180^o\)
Mặt khác \(\widehat{PIO}+\widehat{P}+\widehat{IOP}=180^o\)
\(\Rightarrow\widehat{IOP}=\widehat{OKQ}\Rightarrow\Delta PIO\sim\Delta QOK\)
\(\Rightarrow\frac{IP}{PO}=\frac{OQ}{KQ}\Rightarrow PI.KQ=PO^2\)
Sử dụng bất đẳng thức Cô-si ta có:
\(IP+KQ\ge2\sqrt{IP.KQ}=2\sqrt{OP^2}=PQ\)
acje cho hỏi 2 tam giác đồng dạng ở câu b là góc nào í chỉ ro rõ cho e với ạk
do I là trung điểm của MN
⇒I là trung trực của MN
⇒I⊥MN
⇒∠OIM=90⇔∠OIA=90
xét tứ giác ABIO có ∠OBA=∠OIA=90
⇒ABIO nội tiếp
⇒∠BIA=∠AOB (cùng chắn \(\stackrel\frown{AB}\)) (1)
xét tứ giác ACOI có ∠OIA=∠OCA=90
⇒ACOI nội tiếp
⇒∠AIC=∠AOC (cùng chắn \(\stackrel\frown{AC}\)) (2)
xét tứ giác ABOC nội tiếp đường tròn ; AB=AC
⇒∠AOB=∠AOC (chắn 2 cung = nhau) (3)
từ (1);(2);(3) ⇒∠BIA=∠AIC
⇒IA là tia phân giác ∠BIC
a: ΔOBC cân tại O
mà OI là trung tuyến
nên OI vuông góc BC
Xét tứ giác AION có
góc AIO+góc ANO=180 độ
=>AION là tứ giác nội tiếp
b: Xét ΔAMB và ΔACM có
góc AMB=góc ACM
góc MAB chung
=>ΔAMB đồng dạng với ΔACM
=>AM/AC=AB/AM
=>AM^2=AB*AC
a: ΔOBC cân tại O
mà OI là trung tuyến
nên OI vuông góc BC
Xét tứ giác AION có
góc OIA+góc ONA=180 độ
=>AION là tứ giác nội tiếp
b: Xét ΔAMB và ΔACM có
góc AMB=góc ACM
góc MAB chung
=>ΔAMB đồng dạng với ΔACM
=>AM/AC=AB/AM
=>AM^2=AB*AC