Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: AB=AC(cmt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OB=OC(=R)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA⊥BC(đpcm)
b) Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: OA là tia phân giác của \(\widehat{BOC}\)(Tính chất hai tiếp tuyến cắt nhau)
⇒\(\widehat{BOA}=\widehat{COA}\)(3)
Ta có: ΔOCA vuông tại C(CA là tiếp tuyến của (O) có C là tiếp điểm)
nên \(\widehat{CAO}+\widehat{COA}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{EAO}+\widehat{COA}=90^0\)(4)
Từ (3) và (4) suy ra \(\widehat{EAO}+\widehat{BOA}=90^0\)(5)
Vì tia OA nằm giữa hai tia OE và OB
nên \(\widehat{BOA}+\widehat{EOA}=\widehat{BOE}\)
hay \(\widehat{EOA}+\widehat{BOA}=90^0\)(6)
Từ (5) và (6) suy ra \(\widehat{EAO}=\widehat{EOA}\)
Xét ΔOAE có \(\widehat{EAO}=\widehat{EOA}\)(cmt)
nên ΔOAE cân tại E(Định lí đảo của tam giác cân)
bạn ghi nốt đề đi, mình giúp tiếp nhé
a, Vì AB = AC ( tc tiếp tuyến )
OC = OB = R
Vậy OA là đường trung trực đoạn BC
=> AO vuông BC
b) Biết R = 5 cm, AB = 12 cm. Tính BC?
c) Chứng minh tứ giác AEDO là hình bình hành.
đây nhé bn
A E B C O D
Ta có AB,AC là tiếp tuyến của (O)
\(\Rightarrow AB\perp OB,AC\perp OC,AO\perp CB\)
\(\Rightarrow ABOC\) nội tiếp đường tròn đường kính AO (1)
Vì \(BD\perp BC\Rightarrow AO//DE\left(\perp BC\right)\Rightarrow\widehat{DBC}=90^0\) = > CD là đường kính của (O)
Mà \(EO\perp CD,BC\perp DE\Rightarrow\widehat{EBC}=\widehat{EOC}=90^0\)
\(\Rightarrow ECOB\) nội tiếp (2)
Từ (1) , (2) \(\Rightarrow A,E,B,O,C\) nội tiếp đường tròn đường kính AO
\(\Rightarrow EAOB\) nội tiếp
\(\Rightarrow\widehat{EAO}+\widehat{EBO}=180^0\)
Mà \(\widehat{EBO}+\widehat{BOA}=180^0\left(BE//AO\right)\)
\(\Rightarrow\widehat{EAO}=\widehat{BOA}\)
\(\Rightarrow AOBE\) là hình thang cân