K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

O A B C H D E K F

a) Do AB và AC là các tiếp tuyến cắt nhau tại A nên áp dụng tính chất hai tiếp tuyến cắt nhau ta có: AB = AC và AH là phân giác góc BAC.

Xét tam giác cân ABC có AH là phân giác nên AH đồng thời là đường cao. Vậy thì AO vuông góc với BC tại H.

b) Xét tam giác AEC và ACD có : 

\(\widehat{A}\) chung

\(\widehat{ACE}=\widehat{ACD}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn một cung)

\(\Rightarrow\Delta AEC\sim\Delta ACD\left(g-g\right)\)

\(\Rightarrow\frac{AE}{AC}=\frac{AC}{AD}\Rightarrow AE.AD=AC^2\)

Xét tam giác vuông ACD, đường cao CH, ta có :

\(AH.AO=AC^2\)  (Hệ thức lượng)

Vậy nên ta có : AE.AD = AH.AO

c) Xét tam giác vuông ABO, đường cao BH, ta có: AH.AO = BO2

Do BO = DO nên AH.AO = OD2

Lại có \(\Delta AKO\sim\Delta FHO\left(g-g\right)\Rightarrow\frac{AO}{FO}=\frac{OK}{OH}\Rightarrow OK.OF=AO.OH\)

Vậy nên OK.OF = OD2 hay \(\frac{OK}{OD}=\frac{OD}{OF}\)

Vậy nên \(\Delta OKD\sim\Delta ODF\left(c-g-c\right)\Rightarrow\widehat{FDO}=\widehat{DKO}=90^o\)

Vậy nên FD là tiếp tuyến của đường tròn (O).

1.Từ điểm A ở ngoài đtròn (O) vẽ 2 tiếp tuyến AB và AC với đường tròn(O). Gọi M là trung điểm AB. Nối CM cắt đường tròn(O) tại E. AO cắt BC tại H. Tia AE cắt đường tròn (O) tại Da. Chứng Minh MB bình=ME.MC và CD//ABb. Vẽ OK vuông góc với ED tại K. Vẽ dây cung EN vuông góc với CK (N thuộc (O)). Cm B,O,N thẳng hàng2.Cho điểm M nằm ngoài đtròn (O). Vẽ 2 tiếp tuyến MA,MB...
Đọc tiếp

1.Từ điểm A ở ngoài đtròn (O) vẽ 2 tiếp tuyến AB và AC với đường tròn(O). Gọi M là trung điểm AB. Nối CM cắt đường tròn(O) tại E. AO cắt BC tại H. Tia AE cắt đường tròn (O) tại D
a. Chứng Minh MB bình=ME.MC và CD//AB
b. Vẽ OK vuông góc với ED tại K. Vẽ dây cung EN vuông góc với CK (N thuộc (O)). Cm B,O,N thẳng hàng
2.Cho điểm M nằm ngoài đtròn (O). Vẽ 2 tiếp tuyến MA,MB với đtròn. Vẽ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D), OM cắt AB và (O) lần lượt tại H và I.
a. Cm tg MAOB nội tiếp
b. Cm OH.OM+MC.MD=MO bình
c. Cm CI là tia pg của góc MCH
3. Từ điểm M nằm ngoài (O;R), vẽ 2 tiếp tuyến MA,MB và cát tuyến MCD với (O) (A,B là tiếp điểm và cát tuyến MCD nằm trong góc AMO, MC<MD). Gọi H là giao điểm của AB và OM
a) Cm tg MAOB nội tiếp, OM vuông góc AB
b) Cm AC.BD=AD.BC

0
21 tháng 2 2021

a) Xét tứ giác MAOB có:

\(\widehat{MAO}+\widehat{MBO}=90^o+90^o=180^o\) (MA,MB là tiếp tuyến)

=> Tứ giác MAOB nội tiếp (dhnb)

b) Tam giác CAD vuông tại C (tiếp tuyến tại C) và có BC là đường cao (góc ABC nội tiếp chắn nửa đường tròn)

\(\Rightarrow AC^2=AB.AD\) (hệ thức lượng)    (1)

Có: \(AC^2=\left(2R\right)^2=4R^2\)    (2) 

Từ (1) và (2) suy ra \(AB.AD=4R^2\)

 

a) Xét tứ giác MAOB có

\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét (O) có

ΔABC nội tiếp đường tròn(A,C,B∈(O))

AC là đường kính(gt)

Do đó: ΔABC vuông tại B(Định lí)

⇔CB⊥AB tại B

⇔CB⊥AD tại B

Áp dụng hệ thức lượng trong tam giác vuông vào ΔADC vuông tại C có CB là đường cao ứng với cạnh huyền AD, ta được:

\(AB\cdot AD=AC^2\)

\(\Leftrightarrow AB\cdot AC=\left(2\cdot R\right)^2=4R^2\)(đpcm)

18 tháng 5 2018

ai giúp mình với ạ! mình đang cần gấp , thanks nhiều ạ!

18 tháng 5 2018

a. Vì AB,AC là 2 tiếp tuyến của đt (O) (gt) => AO là phân giác của \(\widehat{BOC}\)(Định lý 2 tiếp tuyến cắt nhau tại 1 điểm)

Mà \(\Delta BOC\)cân tại O (Do OB = OC = R) => AO là đường cao của \(\Delta\)BOC (T/c \(\Delta\)cân) => \(AO\perp BC\)tại H (Đpcm)

b. Ta có: \(\widehat{CMD}=90^o\)(Góc nội tiếp chắn nửa đt) => \(CM\perp AM\Rightarrow\widehat{AMC}=90^o\)

\(Do\)\(AO\perp BC\)tại H (cmt) => \(\widehat{AHC}=90^o\)

Xét tứ giác AMHC có: \(\widehat{AMC}=\widehat{AHC}\left(=90^o\right)\)=> Tứ giác AMHC là tứ giác nội tiếp (Dhnb) => Đpcm

c. 

Xét đt (O) có: \(\widehat{MBC}=\frac{1}{2}sđ\widebat{MC}=\widehat{NBH}\)(T/c góc nội tiếp)  

\(\widehat{ACM}=\frac{1}{2}sđ\widebat{MC}\)(T/c góc tạo bởi tiếp tuyến và dây cung) => \(\widehat{ACM}=\widehat{NBH}\)(1)

Vì AMHC là tứ giác nội tiếp (cmt) => \(\widehat{ACM}=\widehat{AHM}=\widehat{NHM}\)(2 góc nội tiếp cùng chắn \(\widebat{AM}\)) (2)

Từ (1) và (2) => \(\widehat{NBH}=\widehat{NHM}\)

Xét \(\Delta NBH\)và \(\Delta NHM\)có:

\(\widehat{NBH}=\widehat{NHM}\left(cmt\right)\)

\(\widehat{N}\)chung

=> \(\Delta NBH~\Delta NHM\left(g.g\right)\) => \(\frac{NB}{NH}=\frac{NH}{NM}\Rightarrow NH^2=NM.NB\)(Đpcm) (3)

Vì tứ giác AMHC nội tiếp (Cmt) => \(\widehat{HAM}=\widehat{NAM}=\widehat{HCM}=\widehat{BCM}=\frac{1}{2}sđ\widebat{MB}\)(2 góc nội tiếp cùng chắn \(\widebat{HM}\))

Lại có: \(\widehat{NBA}=\widehat{MBA}=\frac{1}{2}sđ\widebat{MB}\)(T/c góc tạo bởi tiếp tuyến và dây cung) => \(\widehat{NAM}=\widehat{NBA}\)

Xét \(\Delta NAM\)và \(\Delta NBA\)có:

\(\widehat{NAM}=\widehat{NBA}\left(Cmt\right)\)

\(\widehat{N}\)chung

=> \(\Delta NAM~\Delta NBA\left(g.g\right)\Rightarrow\frac{NA}{NB}=\frac{NM}{NA}\Rightarrow NA^2=NM.NB\)(4)

Từ (3) và (4) => \(NH^2=NA^2\Rightarrow NH=NA\left(Đpcm\right)\)

d. 

Áp dụng hệ thức lượng trong \(\Delta ABO\)vuông tại B với đường cao BH ta được:

\(AB^2=AH.AO=AH.\frac{\left(OA+OA\right)}{2}=AH.\frac{\left(AK-OK+AI+OI\right)}{2}\)\(AH.\frac{\left(AK+AI\right)}{2}\)(Do OK = OI = R)

\(2AN.\frac{\left(AK+AI\right)}{2}=AN.\left(AK+AI\right)\)(Do NA =NH (cmt) => AH = 2AN) (5)

Xét \(\Delta ABI\)và \(\Delta AKB\)Có:

\(\widehat{A}\)chung

\(\widehat{ABI}=\widehat{AKB}=\frac{1}{2}sđ\widebat{BI}\)(T/c góc tạo bởi tiếp tuyến và dây cung)

=> \(\Delta ABI~\Delta AKB\left(g.g\right)\Rightarrow\frac{AB}{AK}=\frac{AI}{AB}\Rightarrow AB^2=AI.AK\)(6)

Từ (5) và (6) => \(AI.AK=AN.\left(AI+AK\right)\Rightarrow\frac{1}{AN}=\frac{AI+AK}{AI.AK}=\frac{1}{AI}+\frac{1}{AK}\)(Đpcm)

26 tháng 2 2018

1/ Do EF//AD nên \(EF\perp AB\)

Theo tính chất đường kính dây cung ta có AB đi qua trung điểm EF hay AB là trung trực EF.

Vậy thì AE = AF; BE = BF.

2/ Ta thấy hai tam giác vuông DAO và DCO có chung cạnh huyền DO nên DAOC là tứ giác nội tiếp đường tròn đường kính DO.

3/Xét tam giác DEC và DCB có :

Góc D chung

\(\widehat{DCE}=\widehat{DBC}\)   (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung)

\(\Rightarrow\Delta DEC\sim\Delta DCB\left(g-g\right)\)

\(\Rightarrow\frac{DE}{DC}=\frac{DC}{DB}\Rightarrow DC^2=DE.DB\)

4/ Vì \(\Delta DEC\sim\Delta DCB\Rightarrow\frac{EC}{BC}=\frac{DC}{DB}\Rightarrow EC=\frac{BC.DC}{DB}\)

\(\Rightarrow AC.EC=\frac{AC.BC.DC}{DB}=\frac{2S_{ABC}.DC}{DB}\)

Ta cần chứng minh AC.EC = AF.CH (*) hay \(\Rightarrow\frac{2S_{ABC}.DC}{CH}=AF.DB\Rightarrow\frac{2S_{ABC}.DC}{CH}=AE.DB\)

\(\Rightarrow AE.DB=AB.DC=AB.DA\)  (**)

(**) đúng vì \(AE.DB=AB.DA\left(=S_{DAB}\right)\)

Vậy (*) đúng hay AF.CH = AC.EC

5/ Ta cần chứng minh KA = KD để suy ra KE là tiếp tuyến. 
Kéo dài AE, cắt CH tại M .

Do DA // CH (Cùng vuông góc AB) nên \(\frac{AK}{CM}=\frac{KI}{IC}\) 
và \(\frac{KD}{CH}=\frac{KI}{IC}\Rightarrow\frac{AK}{MC}=\frac{KD}{CH}\)  (1)
Gọi P, J lần lượt là giao điểm của DP với CH và BC với AD.
\(\Rightarrow\frac{HP}{AD}=\frac{BP}{BD}=\frac{CP}{DJ}\)  (2)

Xét tam giác ACJ vuông tại C, AD = DC nên DC là đường trung tuyến. Suy ra AD = DJ. 
Từ (2) suy ra HP = PC.
Xét tam giác vuông AMH và PBH, ta có \(\widehat{AMH}=\widehat{HBP}\) (cạnh tương ứng vuông góc) 
\(\Rightarrow\Delta AMH\sim\Delta PBH\left(g-g\right)\)

\(\Rightarrow\frac{MH}{BH}=\frac{AH}{PH}\Rightarrow\frac{MH}{AH}=\frac{BH}{PH}\)
\(\Rightarrow MH=\frac{AH.HB}{PH}=\frac{AH.HB}{\frac{CH}{2}}=\frac{2AH.HB}{CH}\)   (3)
Do CH2 = AH.HB \(\Rightarrow\frac{2AH.HB}{CH}=2CH\)
Từ (3) \(\Rightarrow MH=2CH\Rightarrow CM=CH\) 
Từ (1) ta có AK = KD 
\(\Rightarrow\) KE là trung tuyến của tam giác vuông ADE \(\Rightarrow KA=KE\)
\(\Rightarrow\Delta OKA=\Delta OKE\left(c-c-c\right)\Rightarrow\widehat{KEO}=\widehat{KAO}=90^o\)
hay KE là tiếp tuyến của (O).