K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2019

A B C D E F M

c, Để chứng minh 4 điểm B,C,M,F cùng thuộc 1 đường tròn thì ta cần chứng minh tứ giác BCMF nội tiếp

C/m bằng cách : tổng 2 góc đối bằng 180o

Vì tứ giác ABEF nội tiếp => ^AFB = ^AEB

Mà ^AEB = ^CED (Đối đỉnh)

=>^AFB = ^CED

Vì tứ giác CEFD nội tiếp

=> ^CED = ^CFD

Do đó ^AFB = ^CFD

Dễ thấy tứ giác CEFD nội tiếp (M)

=> MC = MF

=> ^MCF = ^MFC

Vì CEFD nội tiếp

=>^ECF = ^EDF

Mà ^EDF = ^MFD ( tam giác MDF cân tại M)

=> ^ECF = ^MFD

Vì CA là phân giác ^BCF => ^BCA = ^ECF = ^MFD

Ta có : ^AFB + ^BFC + ^CFM + ^MFD = 180o

<=> ^CFD +  ^BFM + ^MFD = 180o

<=> ^CFM + ^MFD + ^BFM + ^ACB = 180o

<=> ^FCM + ^ACF + ^BFM + ^ACB = 180o

<=> ^BFM + ^BCM = 180o

=> Tứ giác BCMF nội tiếp (Đpcm)

Bài này chuyển góc hơi rắc rối tí -.-

Giải giúp tớ với, cần câu trả lời gấp ạk, thanks1 / Cho tam giác ABC, góc A=90 độ, AC=3AB. D, E thuộc AC sao cho AD=DE=EC.a/ Gọi M là điểm đối xứng với B qua D. Chứng minh rằng ABCM là tứ giác nội tiếpb/ Chứng minh rằng góc ACB+ góc AEB= 45 độ2/ Cho đường tròn tâm O bán kính R=3cm và một điểm S cố định bên ngoài đường tròn sao cho SO=5cm. Vẽ tiếp tuyến SA với A...
Đọc tiếp

Giải giúp tớ với, cần câu trả lời gấp ạk, thanks
1 / Cho tam giác ABC, góc A=90 độ, AC=3AB. D, E thuộc AC sao cho AD=DE=EC.
a/ Gọi M là điểm đối xứng với B qua D. Chứng minh rằng ABCM là tứ giác nội tiếp
b/ Chứng minh rằng góc ACB+ góc AEB= 45 độ
2/ Cho đường tròn tâm O bán kính R=3cm và một điểm S cố định bên ngoài đường tròn sao cho SO=5cm. Vẽ tiếp tuyến SA với A là tiếp điểm và cát tuyến SCB không qua tâm sao cho O nằm trong góc ASB ( C nằm giữa S và B ). Gọi H là trung điểm của CB
a) Chứng minh rằng tứ giác SAOH nội tiếp một đường tròn
b) Tính chu vi và diện tích của đường tròn ngoại tiếp tứ giác SAOH
c) Tính tích SC.SB
3/ Cho tam giác ABC nội tiếp đường tròn tâm O đường kính AB=2R. Lấy H là trung điểm của dây BC. Tia OH cắt đường tròn tại D, AD lần lượt cắt tiếp tuyến Bx của đường tròn tại E và F
a) Chứng minh AD là tia phân giác của góc CAB
b) Chứng minh tứ giác ECDF là tứ giác nội tiếp
c) Cho CD= R=căn10cm. Tính diện tích của hình viên phân giới hạn bởi cung CDB với dây CB
4/ Cho tam giác ABC cân ở A nội tiếp đường tròn O đường kính I. Gọi E là trung điểm của AB. K là trung điểm của OI. Chứng minh rằng AEKC là tứ giác nội tiếp
5/Cho tam giác ABC. Các đường phân giác trong của B, C cắt nhau tại S, các đường phân giác ngoài của B và C cắt nhau tại E. Chứng minh rằng BSCE là 1 tứ giác nội tiếp.

1
18 tháng 4 2016

LƯU Ý

Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.

Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.

Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.

20 tháng 8 2021

ui sợ thế sợ quá bạn ạ

  • LUYỆN TẬP
  • HỎI ĐÁP
  • KIỂM TRA

MUA THẺ HỌC

  •  
  •  
  • 1
  • ๖ۣۜƝƘ☆๖ۣۜҪôηɠ•Ҫɦúลツ2k8 ⁀ᶦᵈᵒᶫ - ๖ۣۜTεαм ๖ۣۜFσɾεʋεɾ ๖ۣۜAℓσηε♡ 

☆》Hãčķěř《☆ _❷ⓚ❷ _ Ϯëą๓ _ Trà _ Sữa

 Kết bạn

  • Hoạt động
  • Bạn bè
  • Tủ sách

 ☆》Hãčķěř《☆ _❷ⓚ❷ _ Ϯëą๓ _ Trà _ Sữa

Ai cũng hạnh phúc trừ tôi!...// Để ☆》Hãčķěř《☆ kể cho mà nghe: Câu truyện xảy ra từ tuần trước của tuần trước của tuần trước của tuần trước vào thứ vui ngày buồn tháng nhớ năm thương, sự việc xảy ra vào lúc 19.30, tại thư viện, lúc đó ☆》Hãčķěř《☆ đang đọc sách thì bỗng dưng có 1 đứa con gái đi đến, nó hỏi: Đứa con gái: Cậu ơi!. ☆》Hãčķěř《☆: Ơi. Đứa con gái: Cậu biết dùng google không. ☆》Hãčķěř《☆: Google á, ai chả biết dùng google. Đứa con gái: Thế chỉ cho tớ cách với, tớ tìm mãi tìm mãi mà cũng không tìm được cách để vào được trái tim cậu. Theo như trên mạng thì 2 bọn họ phải cười với nhau nhưng đây thì... ☆》Hãčķěř《☆: Dẹp Dẹp Dẹp! Cút!. Đứa con gái: Ơ, sao cậu phũ thế!. ☆》Hãčķěř《☆: BINH BINH BỐP BỐP!( Vâng và cuối cùng mọi người tự hiểu ạ !). Mọi người ai thích trà sữa thì vào team mình nha! O w O // Gương kia ngự ở trên tường…bao giờ ta gặp được người yêu ta… gương cười gương bảo lại rằng : “Mặt mày mà có người yêu tao quỳ”.Chán thả thính rồi, giờ ai cưa tự đổ!

  • Tên: ☆》Hãčķěř《☆ _❷ⓚ❷ _ Ϯëą๓ _ Trà _ Sữa
  • Đang học tại: 
  • Địa chỉ: - 
  • Điểm hỏi đáp: 0SP, 0GP
  • Điểm hỏi đáp tuần này: 0SP, 0GP
  • Thống kê hỏi đáp

Luyện toán

0 -Trung bình 6.00 - Tổng điểm 60

Luyện văn - Tiếng Việt

0 -Trung bình 0.00 - Tổng điểm 

Luyện Tiếng Anh

0 -Trung bình 0.00 - Tổng điểm

29 tháng 1 2020

Ai trả lời đúng từ câu a- câu c có cả hìnhlà một chiếc thẻ cào 50k (tuỳ mọi loại thẻ bạn muốn chọn) và để địa chỉ email phía bên dưới câu trả lời. ♡♡♡

3 tháng 1 2021

Trả lời hộ mình cái xin. mình đã 2 năm ko on r giờ mới on lại :(((.Xin mọi người trả lời giúp mình :(((

14 tháng 5 2021

a) Vì \(A,M,B\in\left(O\right)\); AB là đường kính

\(\Rightarrow\widehat{AMB}=90^0\)

\(\Rightarrow AM\perp MB\)

Xét tam giác ANB có: BM vừa là đường cao vừa là đường trung bình 

\(\Rightarrow\Delta ANB\)cân tại B

\(\Rightarrow NB=BA\)

\(\Rightarrow N\in\left(C;\frac{BA}{2}\right)\)cố định

b) Vì BM là đường cao của tam giác ABN cân tại B

=> BM là phân giác góc ABN

=> góc ABM= góc NBM

Xét tam giác ARB và tam giác NRB có:

\(\hept{\begin{cases}BRchung\\\widehat{ABM}=\widehat{NBM}\left(cmt\right)\\AB=NB\end{cases}\Rightarrow\Delta ARB=\Delta NRB\left(c-g-c\right)}\)

\(\Rightarrow\widehat{RAB}=\widehat{RNB}=90^0\)

\(\Rightarrow RN\perp BN\)

\(\Rightarrow RN\)là tiếp tuyến của (C)

c) Ta có: A,P,B thuộc (O); AB là đường kính

\(\Rightarrow\widehat{APB}=90^0\)

\(\Rightarrow AP\perp BP\)

\(\Rightarrow RN//AP\)( cùng vuông góc với NB )

Xét tam giác NAB có: \(\hept{\begin{cases}MB\perp AN\\AP\perp BN\end{cases}}\); AP cắt BM tại Q

\(\Rightarrow Q\)là trực tâm tam giác NAB

\(\Rightarrow NQ\perp AB\)

=> NQ // AR(  cùng vuông góc với  AB)

Xét tứ giác ARNQ có:

\(\hept{\begin{cases}AR//NQ\left(cmt\right)\\RN//AP\left(cmt\right)\end{cases}\Rightarrow ARNQ}\)là hình bình hành

Mà 2 đường chéo RQ và AN vuông góc với nhau

=> ARNQ là hình thoi