K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABCD có

\(\widehat{B}+\widehat{D}=180^0\)

nên ABCD là tứ giác nội tiếp

30 tháng 11 2021

a: Xét tứ giác ABCD có 

\(\widehat{A}+\widehat{C}=180^0\)

Do đó: ABCD là tứ giác nội tiếp

b) Xét ΔFDC có 

A\(\in\)FD(gt)

B\(\in\)FC(gt)

AB//CD(gt)

Do đó: \(\dfrac{FA}{AD}=\dfrac{FB}{BC}\)(Định lí Ta lét)

\(\Leftrightarrow\dfrac{FA}{FB}=\dfrac{AD}{BC}=1\)

hay FA=FB

Ta có: FA+AD=FD(A nằm giữa F và D)

FB+BC=FC(B nằm giữa F và C)

mà FA=FB(cmt)

và AD=BC(ABCD là hình thang cân)

nên FD=FC

Ta có: FA=FB(cmt)

FD=FC(cmt)

Do đó: \(FA\cdot FD=FB\cdot FC\)(đpcm)

a) Ta có: ABCD là tứ giác nội tiếp(gt)

nên \(\widehat{A}+\widehat{C}=180^0\)(hai góc đối)(1)

Ta có: ABCD là hình thang(AB//CD)

nên \(\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía)(2)

Từ (1) và (2) suy ra \(\widehat{C}=\widehat{D}\)

Hình thang ABCD(AB//CD) có \(\widehat{C}=\widehat{D}\)(cmt)

nên ABCD là hình thang cân(Dấu hiệu nhận biết hình thang cân)

13 tháng 4 2017

Giải bài 54 trang 89 SGK Toán 9 Tập 2 | Giải toán lớp 9

Tứ giác ABCD có Giải bài 54 trang 89 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ ABCD là tứ giác nội tiếp

Gọi O là tâm đường tròn ngoại tiếp tứ giác ABCD

⇒ OA = OB = OC = OD = R

Do OA= OC nên ΔOAC cân tại O, đường trung tuyến kẻ từ O cũng chính là đường cao của tam giác. Suy ra, O thuộc đường trung trực của AC.

Do OB= OD nên ΔOBD cân tại O, đường trung tuyến kẻ từ O cũng chính là đường cao của tam giác. Suy ra, O thuộc đường trung trực của BD

Do OA= OB nên ΔOAB cân tại O, đường trung tuyến kẻ từ O cũng chính là đường cao của tam giác. Suy ra, O thuộc đường trung trực của AB.

⇒ O thuộc đường trung trực của AC, BD, AB .

Vậy các đường trung trực của AC, BD, AB cùng đi qua O.

18 tháng 1 2021

D A B C O

- Tứ giác ABCD có \(\widehat{ABC}+\widehat{ADC}=180^o\)mà hai góc ABC và ADC là 2 góc ở vị trí đối nhau 

=> Tứ giác ABCD là tứ giác nội tiếp

- Gọi O là tâm của đường tròn ngoại tiếp tứ giác ABCD , khi đó OA = OB = OC = OD ( cùng bán kính của đường tròn ( O ))

+) Vì OA = OB nên O thuộc đường trung trực của đoạn thằng AB

+) Vì OA = OC nên O thuộc đường trung trực của đoạn thẳng AC

+) VÌ OD = OB nên O thuộc đường trung trực của đoạn thằng BD

Do đó các đường trung trực của AB , BD cùng đi qua tâm O của đường tròn ngoại tiếp tứ giác ABCD

 

12 tháng 2 2018

Giải bài 54 trang 89 SGK Toán 9 Tập 2 | Giải toán lớp 9

Tứ giác ABCD có Giải bài 54 trang 89 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ ABCD là tứ giác nội tiếp

Gọi O là tâm đường tròn ngoại tiếp tứ giác ABCD

⇒ OA = OB = OC = OD = R

Do OA= OC nên ΔOAC cân tại O, đường trung tuyến kẻ từ O cũng chính là đường cao của tam giác. Suy ra, O thuộc đường trung trực của AC.

Do OB= OD nên ΔOBD cân tại O, đường trung tuyến kẻ từ O cũng chính là đường cao của tam giác. Suy ra, O thuộc đường trung trực của BD

Do OA= OB nên ΔOAB cân tại O, đường trung tuyến kẻ từ O cũng chính là đường cao của tam giác. Suy ra, O thuộc đường trung trực của AB.

⇒ O thuộc đường trung trực của AC, BD, AB .

Vậy các đường trung trực của AC, BD, AB cùng đi qua O.

Kiến thức áp dụng

+ Nếu một tứ giác có tổng số đo hai góc đối nhau bằng 180º thì tứ giác đó nội tiếp một đường tròn.

23 tháng 6 2017

Đường kính và dây của đường tròn

19 tháng 1 2018

a) Tứ giác AHIK có:

A H I ^ = 90 0   ( I H ⊥ A B ) A K I ^ = 90 0   ( I K ⊥ A D ) ⇒ A H I ^ + A K I ^ = 180 0

=> Tứ giác AHIK nội tiếp.

b) IAD và  ∆ IBC có:

A ^ 1 = B ^ 1  (2 góc nội tiếp cùng chắn cung DC của (O))

A I D ^ = B I C ^  (2 góc đối đỉnh)

=> ∆ IAD ~  IBC (g.g)

⇒ I A I B = I D I C ⇒ I A . I C = I B . I D

c, Xét đường tròn ngoại tiếp tứ giác AHIK có K ^ 1 = D ^ 1

A ^ 1 = H ^ 1  (2 góc nội tiếp cùng chắn cung IK)

mà  A ^ 1 = B ^ 1 ⇒ H ^ 1 = B ^ 1

Chứng minh tương tự, ta được K ^ 1 = D ^ 1

∆ HIK và  ∆ BCD có:  H ^ 1 = B ^ 1  ;  K ^ 1 = D ^ 1

=>   ∆ HIK  ~  BCD (g.g)

d) Gọi S1 là diện tích của  ∆ BCD.

Vì  ∆ HIK  ~  BCD nên:

S ' S 1 = H K 2 B D 2 = H K 2 ( I B + I D ) 2 ≤ H K 2 4 I B . I D = H K 2 4 I A . I C                                 (1)

Vẽ  A E ⊥ B D  ,  C F ⊥ B D ⇒ A E / / C F ⇒ C F A E = I C I A  

∆ ABD và  ∆ BCD có chung cạnh đáy BD nên:

S 1 S = C F A E ⇒ S 1 S = I C I A                                                                     (2)

Từ (1) và (2) suy ra

S ' S 1 ⋅ S 1 S ≤ H K 2 4 I A . I C ⋅ I C I A ⇔ S ' S ≤ H K 2 4 I A 2  (đpcm)