Cho tứ  giác ABCD nội tiếp đường tròn (O; R). Gọi I là giao điểm AC...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2018

a) Tứ giác AHIK có:

A H I ^ = 90 0   ( I H ⊥ A B ) A K I ^ = 90 0   ( I K ⊥ A D ) ⇒ A H I ^ + A K I ^ = 180 0

=> Tứ giác AHIK nội tiếp.

b) IAD và  ∆ IBC có:

A ^ 1 = B ^ 1  (2 góc nội tiếp cùng chắn cung DC của (O))

A I D ^ = B I C ^  (2 góc đối đỉnh)

=> ∆ IAD ~  IBC (g.g)

⇒ I A I B = I D I C ⇒ I A . I C = I B . I D

c, Xét đường tròn ngoại tiếp tứ giác AHIK có K ^ 1 = D ^ 1

A ^ 1 = H ^ 1  (2 góc nội tiếp cùng chắn cung IK)

mà  A ^ 1 = B ^ 1 ⇒ H ^ 1 = B ^ 1

Chứng minh tương tự, ta được K ^ 1 = D ^ 1

∆ HIK và  ∆ BCD có:  H ^ 1 = B ^ 1  ;  K ^ 1 = D ^ 1

=>   ∆ HIK  ~  BCD (g.g)

d) Gọi S1 là diện tích của  ∆ BCD.

Vì  ∆ HIK  ~  BCD nên:

S ' S 1 = H K 2 B D 2 = H K 2 ( I B + I D ) 2 ≤ H K 2 4 I B . I D = H K 2 4 I A . I C                                 (1)

Vẽ  A E ⊥ B D  ,  C F ⊥ B D ⇒ A E / / C F ⇒ C F A E = I C I A  

∆ ABD và  ∆ BCD có chung cạnh đáy BD nên:

S 1 S = C F A E ⇒ S 1 S = I C I A                                                                     (2)

Từ (1) và (2) suy ra

S ' S 1 ⋅ S 1 S ≤ H K 2 4 I A . I C ⋅ I C I A ⇔ S ' S ≤ H K 2 4 I A 2  (đpcm)

a/ Ta có 

IH vuông góc AB => ^AHI = 90

IK vuông góc AD => ^AKI = 90

=> H và K cùng nhìn AI dưới hai góc bằng nhau => AHIK là tứ giác nội tiếp

b/ Xét tam giác ADI và tam giác BCI có

^AID=^BIC (góc đối đỉnh)

sđ ^DAC = sđ ^DBC = 1/2 sđ cung CD (góc nội tiếp) => ^DAC=^DBC

=> tg ADI đồng dạng tg BCI

=>\(\frac{IA}{IB}=\frac{ID}{IC}\)⇒IA.IC=IB.ID

c/ 

Xét  tứ giác nội tiếp AHIK có

^HIK = 180 - ^DAB (hai góc đối của tứ giác nội tiếp bù nhau) (1)

^DAC = ^KHI (2 góc nội tiếp chắn cùng 1 cung) (2)

Xét tứ giác nội tiếp ABCD có

^BCD = 180 - ^DAB (hai góc đối của tứ giác nội tiếp bù nhau) (3)

^DAC = ^DBC (hai góc nội tiếp chắn cùng 1 cung) (4)

Xét hai tam giác HIK và tam giác BCD

Từ (1) và (3) => ^HIK = ^BCD

Từ (2) và (4) => ^KHI = ^DBC

=> tam giác HIK đồng dạng với tam giác BCD

6 tháng 6 2017

a/ Ta có 

IH vuông góc AB => ^AHI = 90

IK vuông góc AD => ^AKI = 90

=> H và K cùng nhìn AI dưới hai góc bằng nhau => AHIK là tứ giác nội tiếp

b/ Xét tam giác ADI và tam giác BCI có

^AID=^BIC (góc đối đỉnh)

sđ ^DAC = sđ ^DBC = 1/2 sđ cung CD (góc nội tiếp) => ^DAC=^DBC

=> tg ADI đồng dạng tg BCI

=> \(\frac{IA}{IB}=\frac{ID}{IC}\Rightarrow IA.IC=IB.ID\)

c/ 

Xét  tứ giác nội tiếp AHIK có

^HIK = 180 - ^DAB (hai góc đối của tứ giác nội tiếp bù nhau) (1)

^DAC = ^KHI (2 góc nội tiếp chắn cùng 1 cung) (2)

Xét tứ giác nội tiếp ABCD có

^BCD = 180 - ^DAB (hai góc đối của tứ giác nội tiếp bù nhau) (3)

^DAC = ^DBC (hai góc nội tiếp chắn cùng 1 cung) (4)

Xét hai tam giác HIK và tam giác BCD

Từ (1) và (3) => ^HIK = ^BCD

Từ (2) và (4) => ^KHI = ^DBC

=> tam giác HIK đồng dạng với tam giác BCD

21 tháng 4 2018

thiếu câu d

7 tháng 6 2021

A B C O E F K I J H M N S T L

c) AT là đường kính của (O), dễ thấy H,K,T thẳng hàng, gọi TH cắt (O) lần nữa tại S, ta được ^ASH = 900

Ta có A,E,H,F,S cùng thuộc đường tròn đường kính AH, suy ra:

(ES,EF) = (AS,AB) = (SC,SB), (SF,SE) = (BS,BC) do đó \(\Delta\)SFE ~ \(\Delta\)SBC

Vì K,L là trung điểm của BC,EF nên \(\Delta\)SFL ~ \(\Delta\)SBK, suy ra \(\Delta\)SFB ~ \(\Delta\)SLK, (KS,KL) = (BS,BA) (1)

Lại có: \(\frac{MF}{MB}=\frac{HF}{HB}=\frac{HE}{HC}=\frac{NE}{NC}\)\(\Delta\)SEC ~ \(\Delta\)SFB, suy ra \(\Delta\)SMN ~ \(\Delta\)SBC

Tương tự như trên, ta thu được (KS,KI) = (BS,BA) (2)

Từ (1);(2) suy ra K,I,L thẳng hàng. Mặt khác K,L,J thẳng hàng vì chúng cách đều E,F.

Do vậy I,J,K thẳng hàng.

22 tháng 3 2021

sao chụy là cô giáo mà chụy hỏi nhiều zậy

22 tháng 3 2021

Bài 1:
b)
chứng minh EDCB là tgnt => góc AED = góc ACB
từ đó, chứng minh tam giác AED đồng dạng ACB (gg)
=> DE / BC = AD / AB
tam giác ADB vuông tại A => AD / AB = cotg A = cotg 45 = 1
c)
kẻ tiếp tuyến tại Ax của (O) (Ax thuộc nửa mp bờ AC chứa B)
góc xAB = ACB = AED
=> DE // Ax
Mà Ax vuông góc với OA nên OA vuông góc với DE. (đpcm)

10 tháng 5 2018

a) Tứ giác AHIK nội tiếp

\(\widehat{AHI}+\widehat{AKI}=90^0+90^0=180^0\)

\(\Rightarrow\text{AHIK nội tiếp}\)

b) \(IA\times IC=IB\times ID\)

\(\text{Xét }\Delta IAB\text{ và }\Delta IDC\text{ có:}\)

\(\widehat{AIB}=\widehat{DIC}\left(\text{2 góc đối đỉnh}\right)\)

\(\widehat{A_1}=\widehat{D_1}\left(\text{cùng chắn }\stackrel\frown{BC}\right)\)

\(\Rightarrow\Delta IAB\sim\Delta IDC\left(g-g\right)\)

\(\Rightarrow\dfrac{IA}{ID}=\dfrac{IB}{IC}\)

\(\Rightarrow IA\times IC=IB\times ID\)

c) \(\Delta HKI\sim\Delta BDC\)

\(\widehat{H_2}=\widehat{A_2}\left(\text{AHIK nội tiếp}\right)\)

\(\widehat{A_2}=\widehat{B_2}\left(\text{cùng chắn }\stackrel\frown{CD}\right)\)

\(\Rightarrow\widehat{H_2}=\widehat{B_2}\) (1)

\(\widehat{K_1}=\widehat{A_1}\left(\text{AHIK nội tiếp}\right)\)

\(\widehat{A_1}=\widehat{D_1}\left(\text{cùng chắn }\stackrel\frown{BC}\right)\)

\(\Rightarrow\widehat{K_1}=\widehat{D_1}\) (2)

Từ (1) và (2) \(\Rightarrow\Delta HKI\sim\Delta BDC\left(g-g\right)\)

d) \(\dfrac{S_{HKI}}{S_{ABD}}\le\dfrac{HK^2}{4AI^2}\)

\(\Delta HKI\sim\Delta BDC\Rightarrow\dfrac{S_{HKI}}{S_{BDC}}=\dfrac{HK^2}{BD^2}\Rightarrow S_{HKI}=\dfrac{HK^2\times S_{BDC}}{BD^2}\)

\(\text{Đặt }T=\dfrac{S_{HKI}}{S_{ABD}}=\dfrac{HK^2\times S_{BDC}}{BD^2\times S_{ABC}}\)

Ta có: \(\dfrac{S_{BDC}}{S_{ABC}}=\dfrac{IC}{IA}\)

\(\Rightarrow T=\dfrac{HK^2\times IC}{BD^2\times IA}=\dfrac{HK^2\times IC}{\left(IB+ID\right)^2\times IA}\)

➤ Áp dụng bất đẳng thức AM - GM

\(\Rightarrow T\le\dfrac{HK^2\times IC}{4\times IB\times ID\times IA}=\dfrac{HK^2\times IC}{4\times IA\times IC\times IA}=\dfrac{HK^2}{4IA^2}\left(đpcm\right)\)

25 tháng 5 2016

Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn tâm O. Kẻ đường cao AH của tam giác và đường kính AD của đường tròn (O). Gọi E,F lần lượt là chân đường vuông góc kẻ từ C và B xuống đường thẳng AD. Gọi M là trung điểm ÁD

a) Chứng minh tứ giác BMFO nội tiếp

b) chứng minh HE//BD

c) Chứng minh $S=\frac{AB.AC.BC}{4R}$S=AB.AC.BC4R     ( Với S là diện tích tam giác ABC, R là bán kính đường tròn (O) )

Chịu @ _@

5 tháng 6 2019

M A B C I D N O H K

a) CM: \(\widehat{OBM}=\widehat{ODC}\)

 \(\widehat{OBM}+\widehat{OBC}=180^o\)( kề bù)

\(\widehat{ODC}+\widehat{OBC}=180^o\)( tứ giác ODCB nội tiếp )

=> \(\widehat{OBM}=\widehat{ODC}\)

b) 

+)Xét tam giác MCN có CO là tia phân giác đồng thời là đường cao

=> Tam giác CMN cân tại C (1)

=> \(\widehat{BMA}=\widehat{DNA}=\widehat{BAM}\)( CD//BA => DN//BA)

=> Tam giác BMA cân tại B

=> BM=BA=CD ( ABCD là hình bình hành) (2)

+) CO là phân giác \(\widehat{BCD}\)

=> \(\widebat{BO}=\widebat{DO}\)

=> BO=DO (3)

+) Xét tam giác BOM và tam giác DOC có:

\(\widehat{OBM}=\widehat{ODC}\)( theo a)

BM=CD ( theo 2)

BO=DO (theo 3)

=> \(\Delta BOM=\Delta DOC\)

+) OM=OC

Và từ (1) => CO là đường trung trực của MN

=> OM=ON

Vậy OM=ON=OC

=> O là tâm đường tròn ngoại tiếp tam giác CMN

c)  GỌi H là giao của IO và BD

=> IH vuông BD và H là trung điể m BD

Ta có: \(KD^2=\left(HD-HK\right)^2=HD^2+HK^2-2.HD.HK=ID^2-IH^2+IK^2-IH^2-2HD\left(HD-KD\right)\)

\(=ID^2+IK^2-2\left(IH^2+HD^2\right)+2HD.KD=ID^2+IK^2-2ID^2+2HD.KD\)

\(=IK^2-ID^2+2HD.KD\)

=> \(IB^2-IK^2=ID^2-IK^2=2HD.KD-KD^2\)

=> \(\frac{IB^2-IK^2}{KD^2}=\frac{2HD-KD}{KD}=\frac{BD-KD}{KD}=\frac{BK}{KD}\)(4)

Ta lại có: CK là phân giác trong của tam giác CBD

=> \(\frac{BK}{KD}=\frac{CB}{CD}\)

Và MB=DC ( theo cm câu a) , CM=CN ( Tam giác CMN cân)

=> CB=DN

=> \(\frac{BK}{KD}=\frac{DN}{MB}\)(5)

Từ (4), (5)

=> ĐPCM