K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2017

. . . P A B C L D K I O H M

a) Dễ thấy: tứ giác ACOM nt

=> \(\widehat{MAO}=\widehat{MCD}\) (1)

Ta cx cm đc: tứ giác OMDB nt

=> \(\widehat{ODM}=\widehat{OBM}\) (2)

Mà: \(\widehat{MAO}=\widehat{OBM}\) (3)

=> \(\widehat{OCM}=\widehat{ODM}\) \(\Rightarrow\Delta OCD\) cân => đpcm

b) Dễ cm đc: tú giác LAHI nt

=> \(\widehat{ILH}=\widehat{IAH}\) (4)

lại cm đc tứ giác KIHB nt

=> \(\widehat{IHK}=\widehat{IBK}\) (5)

Mà: \(\widehat{IBK}=\widehat{IAH}\) (góc tạo bởi tia tiếp tuyến và dây cung) (6)

Từ (4)(5)(6)=> \(\widehat{ILH}=\widehat{IHK}\)

cm tương tự ta có: \(\widehat{IHL}=\widehat{IKL}\)

=> \(\Delta HIL~\Delta KIH\left(g.g\right)\)

\(\Rightarrow\)\(\frac{HL}{IL}=\frac{KH}{IH}\Rightarrow KH\cdot IL=IH\cdot HL\)

p/s: mink lm tắt có j k hiểu thì cmt dưới

28 tháng 2 2019

C/m Tứ giác ACOM là tứ giác như thế nào ?

13 tháng 6 2021
Cô ơi, tại sao góc MCO lại bằng góc MDO vậy ạ
31 tháng 1 2019

a, Chứng minh được  H C B ^ = H K B ^ = 90 0

b,  A C K ^ = H B K ^  (CBKH nội tiếp)

Lại có:  A C M ^ = H B K ^ = 1 2 s đ A M ⏜

=>  A C M ^ = A C K ^

c, Chứng minh được:

DMCA = DECB (c.g.c) => MC = CE

Ta có:  C M B ^ = C A B ^ = 1 2 s đ C B ⏜ = 45 0

=> DMCE vuông cân tại C

d, Gọi  P B ∩ H K = I

Chứng minh được DHKB đồng dạng với DAMB (g.g)

=>  H K K B = M A M B = A P R => H K = A P . B K R

Mặt khác: ∆BIK:∆BPA(g.g) => (ĐPCM)

a: Xét ΔEAB và ΔEBD có

góc EAB=góc EBD

góc AEB chung

=>ΔEAB đồng dạng với ΔEBD

b: ΔEAB đồng dạng với ΔEBD

=>EB^2=EA*ED

Xét ΔEPD và ΔEAP có

góc EPD=góc EAP

góc PED chung

=>ΔEPD đồng dạng với ΔEAP

=>EP^2=ED*EA=EB^2

=>EP=EB

=>AE là trung tuyến của ΔPAB

14 tháng 7 2020

a) Ta có \(IM//AE\)suy ra \(\widehat{MIH}=\widehat{EAH}\). Mà \(\widehat{EAH}=\widehat{ECH}\)nên \(\widehat{MIH}=\widehat{MCH}\). Suy ra tứ giác CIMH nội tiếp.

Dễ dàng chỉ ra được ED là tiếp tuyến của \(\left(O\right)\)suy ra \(\widehat{HED}=\widehat{HCE}\)\(\left(1\right)\)

Do tứ giác CIMH nội tiếp nên \(\widehat{CHM}=90^0\)suy ra \(\widehat{HCM}+\widehat{HMC}=90^0\)

Mà \(\widehat{HMD}+\widehat{HMC}=90^0\)nên \(\widehat{HCM}=\widehat{HMD}\)\(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra \(\widehat{HED}=\widehat{HMD}\)nên tứ giác EMHD nội tiếp. Do đó \(\widehat{HDM}=\widehat{HEM}\)mà \(\widehat{HEM}=\widehat{HCD}\)nên \(\widehat{HDM}=\widehat{HCD}\)

Từ đó chứng minh được BD là tiếp tuyến của \(\left(O_1\right)\)

b) Sử dụng tính chất đường nối tâm vuông góc với dây chung ta có: \(OO_2\perp HE,O_2O_1\perp HD\)và do \(EH\perp HD\)suy ra \(OO_2\perp O_2O_1\)

Dễ thấy \(\widehat{COM}=45^0\)suy ra \(\widehat{CAE}=45^0\)nên \(\widehat{O_2OO_1}=45^0\)\(\Delta O_2OO_1\)vuông cân tại \(O_2\)

Tứ giác OCDE là hình vuông cạnh R và \(O_2\) là trung điểm của DE nên ta tính được \(O_2O^2=\frac{5R^2}{4}\)

.Vậy diện tích \(\Delta O_2OO_1\)  là\(\frac{5R^2}{8}\)

8 tháng 2 2018

a) \(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn nên \(\widehat{ACB}=90^o\). Vậy tam giác ABC vuông tại C.

Xét tam giác vuông PAB có đường cao AC, áo dụng hệ thức lượng trong tam giác ta có:

\(PA^2=PC.PB\)

b) Áp dụng tính chất hai tiếp tuyến cắt nhau, ta có PA = PM

Lại có OA = OM nên PO là trung trực của AM.

c) Ta có \(\widehat{CBA}=30^o\Rightarrow\widehat{CAB}=60^o\) hay tam giác CAO đều. Suy ra AC = R

Xét tam giác vuông PAB có đường cao AC, áo dụng hệ thức lượng trong tam giác ta có:

\(\frac{1}{AC^2}=\frac{1}{AP^2}+\frac{1}{AB^2}\Rightarrow\frac{1}{R^2}=\frac{1}{AP^2}+\frac{1}{4R^2}\)

\(\Rightarrow AP=\frac{2R}{\sqrt{3}}\)

\(\Rightarrow PO=\sqrt{PA^2+AO^2}=\frac{\sqrt{21}R}{3}\)

Xét tam giác vuông PAO, đường cao AN, áo dụng hệ thức lượng ta có:

\(\frac{1}{AN^2}=\frac{1}{PA^2}+\frac{1}{AO^2}\Rightarrow AN=\frac{2\sqrt{7}R}{7}\)

\(\Rightarrow AM=2AN=\frac{4\sqrt{7}}{7}R\)

d) Kéo dài MB cắt AP tại E.

Ta thấy ngay tam giác EMA vuông có PM = PA nên PA = PE

Do MH // AE nên áo dụng định lý Ta let ta có:

\(\frac{HI}{AP}=\frac{IB}{PB}=\frac{MI}{EP}\)

Do AP = EP nên MI = HI

Ta cũng có N là trung điểm AM nên NI là đường trung bình tam giác AMH.

\(\Rightarrow NI=\frac{AH}{2}\)

Xét tam giác vuông AMB, đường cao MH, áp dụng hệ thức lượng ta có:

\(AH.AB=AM^2\Rightarrow AH=\frac{8}{7}R\)

\(\Rightarrow NI=\frac{4}{7}R\)