K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : MP = MQ (tính chất tiếp tuyến)

=> \(\Delta\) MPQ là tam giác cân

=> ^MPQ = ^MQP

mà ^MQP = ^MIP (2 góc nội tiếp cùng chắng cung MP)

=> ^MPQ = ^MIP => ^MPE = ^MIP

Xét \(\Delta\) MPE và \(\Delta\) MIP ta có :

 M: góc chung

^MPE = ^MIP (cmt)

=> \(\Delta\)MPE đồng dạng \(\Delta\) MIP (g.g)

=> \(\frac{MP}{MI}=\frac{ME}{MB}\)

=> đpcm

8 tháng 6 2017

ta có : MP = MQ (tính chất tiếp tuyến)

\(\Rightarrow\) \(\Delta\) MPQ là \(\Delta\) cân \(\Rightarrow\) MPQ = MQP

mà MQP = MIP (2 góc nội tiếp cùng chắng cung MP)

\(\Rightarrow\) MPQ = MIP \(\Leftrightarrow\) MPE = MIP

xét \(\Delta\) MPE và \(\Delta\) MIP ta có :

góc M chung

MPE = MIP (chứng minh trên)

\(\Rightarrow\) \(\Delta\) MPE đồng dạng \(\Delta\) MIP (góc-góc)

\(\Rightarrow\) \(\dfrac{MP}{MI}\) = \(\dfrac{ME}{MP}\) \(\Leftrightarrow\) MP2 = ME.MI (đpcm)

8 tháng 6 2017

xét tứ giác MPOQ ta có : MPO = 90 (MP là tiếp tuyến (o))

MQO = 90 (MQ là tiếp tuyến (o))

\(\Rightarrow\) MPO + MQO = 180

mà 2 góc này ở vị trí đối nhau

\(\Rightarrow\) tứ giác MPOQ nội tiếp

xét tứ giác MPIO ta có : MPO = 90 (MP là tiếp tuyến (o))

I là trung điểm của AB \(\Rightarrow\) MIO = 90 (quan hệ giữa đường kính và dây cung)

mà 2 góc này cùng nhìn xuồng MO \(\Rightarrow\) tứ giác MPIO nội tiếp

ta có 2 tứ giác nội tiếp MPOQ và MPIO cùng có 3 điểm chung M,P,O và các góc vuông đều nhìn xuống OM

\(\Rightarrow\) 5 điểm M,P,O,I,Q cùng thuộc 1 đường tròn đường kính MO ( đpcm)

11 tháng 12 2023

a: Xét tứ giác OPMQ có

\(\widehat{OPM}+\widehat{OQM}=90^0+90^0=180^0\)

=>OPMQ là tứ giác nội tiếp đường tròn đường kính OM

=>M,P,O,Q cùng nằm trên đường tròn đường kính OM

b: Xét (O) có

ΔPQA nội tiếp

PA là đường kính

Do đó: ΔPQA vuông tại Q

=>AQ\(\perp\)QP tại Q

=>AQ\(\perp\)PB tại Q

Xét ΔAPB vuông tại A có AQ là đường cao

nên \(PQ\cdot PB=PA^2=\left(2R\right)^2=4R^2\)

11 tháng 12 2023

Cảm ơn bạn , nhưng còn 1 ý của câu b) bạn giúp mình với 

 

mk giúp đc ko ?

25 tháng 4 2020

mik ko giúp đc

chúc hok tốt nha b

28 tháng 11 2017

Bài 2:

O A B C E D M

Ta thấy EB // AC nên \(\frac{EB}{MA}=\frac{ED}{DA}\Rightarrow AM.ED=EB.DA\)  (1)

Do EB//AC nên \(\widehat{BCA}=\widehat{CBE}\Rightarrow\widebat{EC}=\widebat{CB}\)

Vậy thì \(2.\widehat{DMC}=\widebat{BC}-\widebat{DC}=\widebat{EC}+\widebat{EB}-\widebat{DC}=\left(\widehat{CB}-\widebat{DC}\right)+\widebat{EB}=\widebat{ED}=2.\widehat{DCE}\)

\(\Rightarrow\widehat{DMC}=\widehat{DCE}\)

Mà \(\widehat{DEC}=\widehat{DCM}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung)

\(\Rightarrow\Delta EDC\sim\Delta CDM\left(g-g\right)\Rightarrow\frac{ED}{CD}=\frac{EC}{CM}\Rightarrow CM.ED=CD.EC\)    (2)

Từ (1) và (2) ta thấy, muốn chứng minh CM = MA, ta chỉ cần chứng minh EB.DA = CD.EC

Lại có \(\widebat{CE}=\widebat{CB}\Rightarrow CE=CB\)

Vậy ta cần chứng minh: EB.DA = CD.BC

Ta có \(\widehat{DAC}=\frac{\widebat{EC}-\widebat{DC}}{2}=\frac{\widebat{BC}-\widebat{DC}}{2}=\frac{\widebat{DB}}{2}=\widehat{DCB}\)

Vậy nên ta có ngay \(\Delta DBC\sim\Delta DCA\left(g-g\right)\Rightarrow\frac{BD}{CD}=\frac{BC}{CA}\Rightarrow BC.CD=BD.CA\left(3\right)\)

Ta dễ dàng thấy ngay \(\Delta BDA\sim\Delta EBA\left(g-g\right)\Rightarrow\frac{BD}{EB}=\frac{DA}{BA}=\frac{DA}{CA}\Rightarrow EB.DA=BD.CA\left(4\right)\)

Từ (3) và (4) ta có \(EB.DA=BC.CD\)

Từ đó suy ra MC = MA hay M là trung điểm của AC (đpcm).

28 tháng 11 2017

Ai giúp mik nốt bài 1 với ạ