K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

E M A B O C H N D J K

a) kẻ AO cắt (O) tại N

xét 2 tam giác vuông MAO và MBO có OA=OB và OM chung nên là 2 tam giác bằng nhau => MA=MB và góc OMA= góc OMB

tam giác MAB cân ở M có MH là phân giác nên cũng là đường cao nên MH \(\perp AB\)

tam giác vuông MHB có HE là trung tuyến nên HE=EB hay EHB cân ở E => \(\widehat{EHB}=\widehat{EBH}=\widehat{MAB}\)(Vì tam giác MAB cân ở M)=\(\widehat{MOA}\)(vì đều + \(\widehat{OAH}\)=90o)

Mà BN vuông góc với AB; MO cũng vuông góc với AB => MO//BN nên \(\widehat{MOA}=\widehat{ONB}\)=\(\widehat{ECB}\)(vì tứ giác ACBN nội tiếp)

vậy \(\widehat{EHB}=\widehat{ECB}\)=> CHBE nội tiếp

b) EB là tiếp tuyến của (O) nên dễ dàng chứng minh EB2=EC.EA

Mà EB=EM => EM2=EC.EA <=> \(\frac{EM}{EC}=\frac{EA}{EM}\)=> tam giác EMC và tam giác EAM đồng dạng =>  \(_{\widehat{AME}=\widehat{MCE}=\widehat{ACD}=\widehat{ABD}}\)

hay \(\widehat{AME}=\widehat{ABD}\)

lại có \(\widehat{ADB}=\widehat{ECB}=\widehat{EHB}=\widehat{EBH}\)

2 tam giác AMB và tam giác ABD có 2 góc tương ứng bằng nhau => đồng dạng với nhau

mà tam giác AMB cân ở M nên tam giác ABD cân ở B

c)\(\frac{KD}{KA}=3\)

13 tháng 7 2020

Câu c, làm thế nào thế Vũ Tiến Mạnh

16 tháng 3 2018

a) góc HEC = góc CAM = góc CBH.

b) CM EB2 = EC.EA = EM2 từ đó ta có góc EMC = góc EAM = góc ADC suy ra AD song song MB. Do đó góc BDA = góc ABM = góc BAD.

c) Ta có BJ là đường kính và BJ vuông góc với AD tại K (AD song song MB). Do đó KD = KA

16 tháng 3 2018

K là giao của MJ với AD mak bạn

16 tháng 8 2021

( mấy cái cơ bản thì tự viết nhé )

a) góc MAO và góc MBO= 90 độ

xét tứ giác MAOB có góc MAO+MBO=180 độ

=> MAOB nội tiếp

b) Xét (O) có EB là tiếp tuyến của (O)

\(\Rightarrow\widehat{EBD}=\widehat{EAB}\left(=\frac{1}{2}sđ\widebat{DB}\right)\)

Xét tam giác EDB và tam giác EBA có:

\(\hept{\begin{cases}\widehat{AEB}chung\\\widehat{EBD}=\widehat{EAB}\left(cmt\right)\end{cases}\Rightarrow\Delta EDB~\Delta EBA\left(g-g\right)}\)

\(\Rightarrow\frac{BE}{DE}=\frac{AE}{BE}\)

\(\Rightarrow BE^2=AE.DE\left(1\right)\)

Vì \(AC//MB\Rightarrow\widehat{ACM}=\widehat{DME}\left(SLT\right)\)

Ta có: \(\hept{\begin{cases}\widehat{ACM}=\widehat{ABD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\\\widehat{ABD}=\widehat{MAD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\end{cases}\Rightarrow\widehat{ACM}=\widehat{MAD}}\)

\(\Rightarrow\widehat{DME}=\widehat{MAD}\)

Xét tam giác EMD và tam giác EAM có: 

\(\hept{\begin{cases}\widehat{DME}=\widehat{MAD}\\\widehat{AME}chung\end{cases}}\Rightarrow\Delta EMD~\Delta EAM\left(g-g\right)\)

\(\Rightarrow\frac{ME}{DE}=\frac{AE}{ME}\)

\(\Rightarrow ME^2=DE.AE\left(2\right)\)

Từ (1) và (2) \(\Rightarrow BE=ME\left(đpcm\right)\)

c)  mai nốt :V

16 tháng 8 2021

c) El à trung điểm MB;H là trung điểm AB

-> EH là đường trung bình tam giác MAB

=> EH// MA

=> góc EHB= góc MAB ( đồng vị )

Mà góc MAB = góc AKB ( = 1/2 số đo cung AB )

=> góc EHB= góc AKB

mà góc EHB+ góc IHB = 180 độ

=> góc AKB + góc IHB = 180 độ

=> BHIK nội tiếp

=> góc BHK= BIK  mà góc BHK= 90 độ

=> góc BIK= 90 độ

=> AK vuông góc với BI 

b) Xét (O) có

MA là tiếp tuyến có A là tiếp điểm(gt)

MB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: MA=MB(Tính chất hai tiếp tuyến cắt nhau)

Xét ΔMAB có MA=MB(cmt)

nên ΔMAB cân tại M(Định nghĩa tam giác cân)

Suy ra: \(\widehat{MAB}=\widehat{MBA}\)(hai góc ở đáy)

hay \(\widehat{FAB}=\widehat{EBA}\)

Xét ΔFAB vuông tại F và ΔEBA vuông tại E có 

AB chung

\(\widehat{FAB}=\widehat{EBA}\)(cmt)

Do đó: ΔFAB=ΔEBA(cạnh huyền-góc nhọn)

Suy ra: \(\widehat{FBA}=\widehat{EAB}\)(hai góc tương ứng)

hay \(\widehat{HBA}=\widehat{HAB}\)

Xét ΔHAB có \(\widehat{HBA}=\widehat{HAB}\)(cmt)

nên ΔHAB cân tại H(Định lí đảo của tam giác cân)

Ta có: OA=OB(=R)

nên O nằm trên đường trung trực của AB(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: IA=IB(I là trung điểm của AB)

nên I nằm trên đường trung trực của AB(Tính chất đường trung trực của một đoạn thẳng)(2)

Ta có: HA=HB(ΔHAB cân tại H)

nên H nằm trên đường trung trực của AB(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: MA=MB(cmt)

nên M nằm trên đường trung trực của AB(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (1), (2), (3) và (4) suy ra O,H,I,M thẳng hàng(đpcm)

a) Xét tứ giác ABEF có 

\(\widehat{AEB}=\widehat{AFB}\left(=90^0\right)\)

\(\widehat{AEB}\) và \(\widehat{AFB}\) là hai góc cùng nhìn cạnh AB

Do đó: ABEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)

nên MAOB là tứ giác nội tiếp

Xét (O) có

ΔADC nội tiếp

AC là đường kính

Do đó: ΔADC vuông tại D

Xét ΔCAM vuông tại A có AD là đường cao

nên \(AM^2=MB^2=MD\cdot MC\)

b: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của BA

hay MO⊥AB

Xét ΔMAO vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2=MC\cdot MD\)

a: góc OBE+góc OCE=180 độ

=>OBEC nội tiếp

b: Xét ΔEBD và ΔEAB có

góc EBD=góc EAB

góc BED chung

=>ΔEBD đồng dạng với ΔEAB

=>EB/EA=ED/EB

=>EB^2=EA*ED

 

Sửa đề; AH vuông góc BC, I là trung điểm của AH, MO cắt AB tại K

a: A,E,B,C cùng thuộc (O)

=>góc AEB+góc ACB=180 dộ

=>góc AEK+góc KEB+góc ACB=180 độ

=>góc KEB=90 độ-góc ACB

góc KMB=90 độ-góc ABM

mà góc ABM=góc ACB

nên góc KEB=góc KMB

=>MEKB nội tiếp

=>góc EMK=góc EBK=góc EAM

=>OM là tiếp tuyến của đừog tròn ngoại tiếp ΔMEA

2 tháng 3 2019

O M A B H C D I

a, Xét tứ giác MAOB có \(\widehat{OAM}=90^0\)

\(\widehat{OBM}=90^0\)

Do A, B LÀ TIẾP ĐIỂM

\(\Rightarrow\widehat{OAM}+\widehat{OBM}=180^0\)

=> Tứ giá MAOB là tứ giác nội tiếp

MB^2 không bằng MC.MD nha

13 tháng 3 2023

loading...