Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)a) Theo tính chất hai tiếp tuyến cắt nhau ta có:
+ ABAB là tia phân giác của góc HADHAD
Suy ra: ˆDAB=ˆBAHDAB^=BAH^
+ ACAC là tia phân giác của góc HAEHAE
Suy ra: ˆHAC=ˆCAEHAC^=CAE^
Ta có: ˆHAD+ˆHAE=2(ˆBAH+ˆHAC)HAD^+HAE^=2(BAH^+HAC^)=2.ˆBAC=2.90∘=180∘=2.BAC^=2.90∘=180∘
Vậy ba điểm D,A,ED,A,E thẳng hàng.
b)b) Gọi MM là trung điểm của BCBC
Theo tính chất của tiếp tuyến, ta có: AD⊥BD;AE⊥CEAD⊥BD;AE⊥CE
Suy ra: BD//CEBD//CE
Vậy tứ giác BDECBDEC là hình thang.
Vì MM là trung điểm của BCBC và AA là trung điểm của DEDE (vì DE là đường kính đường tròn (A))
Nên MAMA là đường trung bình của hình thang BDECBDEC
Suy ra: MA//BD⇒MA⊥DEMA//BD⇒MA⊥DE (vì BD⊥DEBD⊥DE)
Trong tam giác vuông ABCABC có AM là đường trung tuyến nên ta có: MA=MB=MC=BC2MA=MB=MC=BC2
Suy ra MM là tâm đường tròn đường kính BCBC với MAMA là bán kính
Vậy DEDE là tiếp tuyến của đường tròn tâm MM đường kính BC.
Tóm tắt thôi nhé
a) Các cạnh // => Hình bình hành
T/g OBE = t/g OCD (^B=^C=90*, OB=OC, ^BOE=^COD vì cùng phụ với EOD) => OE = OD (2 cạnh kề) => Hình thoi
b) Nối OO' => 2 tam giác cân cùng góc đáy => so le trong => //
c) 1] OO' là đường trung trực của AB => đường trung bình
2] CB//OO'
Cm tương tự 1] để được BD//OO' => Ơ-clit => thẳng hàng
(Bài này có dính líu đến tứ giác nội tiếp một chút, không biết bạn học chưa. Mình sẽ cố né nội dung đó.)
\(A,O,B,C\) cùng thuộc đường tròn đường kính \(AO\).
\(B,O,C,E\) cùng thuộc đường tròn đường kính \(BE\).
(Bạn có thể chứng minh 2 điều này bằng các góc vuông)
Mà đường tròn ngoại tiếp tam giác \(BOC\) chỉ có 1 nên \(A,B,O,C,E\) cùng thuộc đường tròn.
\(AECO\) là hình thang nội tiếp nên nó là hình thang cân.
Từ đó CM được \(GA=GO,IA=IO\) và suy ra \(IG\) là đường trung trực của \(OA\).