Từ điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB, AC với đường t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2021

a, Gọi I là trung điểm AB 

Xét tam giác AEB vuông tại E, I là trung điểm 

=> \(EI=AI=IB=\frac{AB}{2}\)(1) 

Xét tam giác ADB vuông tại D, I là trung điểm 

=> \(DI=AI=IB=\frac{AB}{2}\)(2) 

Từ (1) ; (2) => A ; D ; B ; F cùng nằm trên đường tròn (I;AB/2)

b, Gọi O là trung điểm AC 

Xét tam giác AFC vuông tại F, O là trung điểm 

=> \(FO=AO=CO=\frac{AC}{2}\)(3) 

Xét tam giác CDA vuông tại D, O là trung điểm 

=> \(DO=AO=CO=\frac{AC}{2}\)(4) 

Từ (3) ; (4) => A ; D ; C ; F cùng nằm trên đường tròn (O;AC/2)

c, Gọi T là trung điểm BC

Xét tam giác BFC vuông tại F, T là trung điểm 

=> \(FT=BT=CT=\frac{BC}{2}\)(5) 

Xét tam giác BEC vuông tại E, T là trung điểm 

=> \(ET=BT=CT=\frac{BC}{2}\)(6) 

Từ (5) ; (6) => B ; C ; E ; F cùng nằm trên đường tròn (T;BC/2)

28 tháng 6 2021

A B O C D E M H K

a)Ta có: EA \(\perp\)AB (t/c tiếp tuyến) => \(\widehat{OAE}=90^0\)

       OD \(\perp\)EC (t/c tiếp tuyến) => \(\widehat{ODE}=90^0\)

Xét t/giác AODE có \(\widehat{OAE}+\widehat{ODE}=90^0+90^0=180^0\)

=> t/giác AODE nt đường tròn (vì tổng 2 góc đối diện  = 1800)

b) Xét \(\Delta\)EKD và \(\Delta\)EDB

có: \(\widehat{BED}\):chung

 \(\widehat{EDK}=\widehat{EBK}=\frac{1}{2}sđ\widebat{KD}\)

 => \(\Delta\)EKD ∽ \(\Delta\)EDB (g.g)

=> \(\frac{ED}{EB}=\frac{EK}{ED}\)=> ED2 = EK.EB (1)

Ta có: AE = ED (t/c 2 tt cắt nhau) => E thuộc đường trung trực của AD

 OA = OD = R => O thuộc đường trung trực của AD
=> EO là đường trung trực của ED => OE \(\perp\)AD

Xét \(\Delta\)EDO vuông tại D có DH là đường cao => ED2 = EK.EB (2)

Từ (1) và (2) => EH.EO = DK.EB => \(\frac{EH}{EB}=\frac{EK}{EO}\)

Xét tam giác EHK và tam giác EBO

có: \(\widehat{OEB}\): chung

 \(\frac{EH}{EB}=\frac{EK}{EO}\)(cmt)

=> tam giác EHK ∽ tam giác EBO (c.g.c)

=> \(\widehat{EHK}=\widehat{KBA}\)

c) Ta có: OM // AE (cùng vuông góc với AB) => \(\frac{OM}{AE}=\frac{MC}{EC}\)(hq định lí ta-lét)

=> OM.EC = AE.MC

Ta lại có: \(\frac{EA}{EM}-\frac{MO}{MC}=\frac{EA.MC-MO.EM}{EM.MC}=\frac{MO.EC-MO.EM}{EM.MC}=\frac{OM.MC}{EM.MC}=\frac{OM}{EM}\)

Mặt khác: OM // AE => \(\widehat{MOE}=\widehat{OEA}\)(slt)

mà \(\widehat{AEO}=\widehat{OEM}\)(t/c 2 tt cắt nhau)

=> \(\widehat{MOE}=\widehat{MEO}\) => tam giác OME cân tại M => OM = ME

=> \(\frac{OM}{EM}=1\)

=> \(\frac{EA}{EM}-\frac{OM}{MC}=1\)

DD
16 tháng 5 2021

a) \(BEFI\)nội tiếp vì \(\widehat{BEF}=\widehat{BIF}=90^o\).

b) \(\widehat{ADC}\)là góc nội tiếp chắn cung \(\widebat{AC}\).

\(\widehat{CBE}\)là góc nội tiếp chắn cung \(\widebat{CE}\).

\(\widebat{AC}=\widebat{CE}\)suy ra \(\widehat{ADC}=\widehat{CBE}\).

25 tháng 3 2022

Mình đang thắc mắc chỗ chứng minh \(\widehat{EOC}=\widehat{ECD}\), còn mấy chỗ còn lại mình làm được rồi.

22 tháng 3 2021

sao chụy là cô giáo mà chụy hỏi nhiều zậy

22 tháng 3 2021

Bài 1:
b)
chứng minh EDCB là tgnt => góc AED = góc ACB
từ đó, chứng minh tam giác AED đồng dạng ACB (gg)
=> DE / BC = AD / AB
tam giác ADB vuông tại A => AD / AB = cotg A = cotg 45 = 1
c)
kẻ tiếp tuyến tại Ax của (O) (Ax thuộc nửa mp bờ AC chứa B)
góc xAB = ACB = AED
=> DE // Ax
Mà Ax vuông góc với OA nên OA vuông góc với DE. (đpcm)