Từ đẳng thức x . 2 = y . 3 (với x, y khác 0) ta lập được tỉ lệ thức là
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2021

\(\frac{x}{y}=\frac{3}{2};\frac{x}{3}=\frac{y}{2};\frac{y}{x}=\frac{2}{3};\frac{3}{x}=\frac{2}{y}\)

23 tháng 11 2017

Bài 4 câu c) và x-y+y hay x-y+z vậy bạn

24 tháng 11 2017

1 a) \(\dfrac{\left(-2\right)}{5}\)= \(\dfrac{-6}{15}\); \(\dfrac{15}{-6}\)= \(\dfrac{5}{-2}\); \(\dfrac{-6}{-2}\)= \(\dfrac{15}{5}\); \(\dfrac{-2}{-6}\)= \(\dfrac{5}{15}\)

7 tháng 8 2017

Bài 1:

Ta có:

+) \(3.4=2.6\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}=\dfrac{6}{4}\\\dfrac{3}{6}=\dfrac{2}{4}\\\dfrac{4}{2}=\dfrac{6}{3}\\\dfrac{4}{6}=\dfrac{2}{3}\end{matrix}\right.\)

+) \(3.6=2.9\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}=\dfrac{9}{6}\\\dfrac{3}{9}=\dfrac{2}{6}\\\dfrac{6}{2}=\dfrac{9}{3}\\\dfrac{6}{9}=\dfrac{2}{3}\end{matrix}\right.\)

Bài 2:

a) Ta có: \(\dfrac{x}{11}=\dfrac{y}{13}\)\(x-y=6\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{11}=\dfrac{y}{13}=\dfrac{x-y}{11-13}=\dfrac{6}{-2}=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=11.\left(-3\right)=-33\\y=13.\left(-3\right)=-39\end{matrix}\right.\)

Vậy \(x=-33;y=-39\)

b) Theo bài ra ta có:

\(x:y:z=1:2:3\)

\(\Rightarrow\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)

\(\Rightarrow\dfrac{4x}{4}=\dfrac{3y}{6}=\dfrac{2z}{6}\)

\(4x-3y+2z=36\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{4x}{4}=\dfrac{3y}{6}=\dfrac{2z}{6}=\dfrac{4x-3y+2z}{4-6+6}=\dfrac{36}{4}=9\)

\(\Rightarrow\left\{{}\begin{matrix}4x=4.9=36\Rightarrow x=9\\3y=6.9=54\Rightarrow y=18\\2z=6.9=54\Rightarrow z=27\end{matrix}\right.\)

Vậy \(x=9;y=18;z=27\)

c) Ta có: \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}\)

\(\Rightarrow\dfrac{5x}{15}=\dfrac{y}{5}=\dfrac{3z}{-6}\)

\(5x-y+3z=124\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{5x}{15}=\dfrac{y}{5}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5+\left(-6\right)}=\dfrac{124}{4}=31\)

\(\Rightarrow\left\{{}\begin{matrix}5x=15.31=465\Rightarrow x=93\\y=5.31=155\\3z=\left(-6\right).31=-186\Rightarrow z=-62\end{matrix}\right.\)

Vậy \(x=93;y=155;z=-62\)

26 tháng 8 2021

A= 3x3 - (3x -2)x2  - 2x(x+1)

A= 3x3 - 3x3 + 2x2 - 2x2 -2x

A= -2x

Thay x =-20 vào A ta được:

A = -2.(-20) = 40

Vậy A= 40 khi x = -20 

b) C= x(2x+1) - x2(x+2) + x3 -x + 3

C= 2x2 + x - x3 - 2x2 + x3 -x +3

C= (2x2 - 2x2) + (x-x) - (x3 -x3) +3 

C = 3

Vậy C= 3

19 tháng 9 2019

Bài 3:

a) \(\frac{x}{1,2}=\frac{5}{6}\)

\(x.6=5.1,2\)

\(x.6=6\)

\(x=6:6\)

\(x=1\)

Vậy \(x=1.\)

b) \(\frac{5}{9}:x=\frac{7}{4}:\frac{3}{10}\)

\(\frac{5}{9}:x=\frac{35}{6}\)

\(x=\frac{5}{9}:\frac{35}{6}\)

\(x=\frac{2}{21}\)

Vậy \(x=\frac{2}{21}.\)

Bài 5:

Ta có: \(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

\(\Rightarrow\left(a+b\right).\left(d+a\right)=\left(b+c\right).\left(c+d\right)\)

\(\Rightarrow ad+a^2+bd+ba=bc+bd+c^2+cd\)

\(\Rightarrow a^2+a.\left(b+d\right)=c^2+c.\left(b+d\right)\)

\(\Rightarrow a.\left(b+d\right)=c.\left(b+d\right)\)

\(\Rightarrow a=c\left(đpcm\right).\)

Chúc bạn học tốt!

19 tháng 9 2019

Nhầm. Chúc em học tốt! Contrim Đẹptrai

19 tháng 6 2019

1)

\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{8}=2\Rightarrow x=16\\\frac{y}{12}=2\Rightarrow x=24\\\frac{z}{15}=2\Rightarrow z=30\end{matrix}\right.\)

2)

Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)

xy=10 <=> 2k.5k=10

<=>10k2=10

<=> k=1

\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)

3)

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)

\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)

\(\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)

27 tháng 12 2016

Giải:
Ta có: \(\frac{x+2}{y+3}=\frac{2}{3}\Rightarrow3\left(x+2\right)=2\left(y+3\right)\)

\(\Rightarrow3x+6=2y+6\)

\(\Rightarrow3x=2y\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=k\)

\(\Rightarrow x=2k,y=3k\)

Lại có: \(A=\frac{x^2+y^2}{xy}=\frac{\left(2k\right)^2+\left(3k\right)^2}{2k3k}=\frac{4k^2+9k^2}{6k^2}=\frac{\left(4+9\right)k^2}{6k^2}=\frac{13}{6}\)

Vậy \(A=\frac{13}{6}\)

27 tháng 12 2016

\(A=\frac{13}{6}\)