K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔBDC nội tiếp

BD là đường kính

DO đó:ΔBDC vuông tại C

b: Xét ΔOBA và ΔOCA có

OB=OC

AB=AC

OA chung

DO đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)

hay AC là tiếp tuyến của (O)

19 tháng 11 2017

â)vì tam giác bcd nội tiếp (ô) đường kính bd nên tam giác bcd vuông

19 tháng 11 2017

b)xet (o) co :oh vuong goc bd tai h nen h la trung diem bc(tc)                                                                                                               xet tam giac abc co ah la duong cao(gt) va la duong trung tuyen(cmt) nen tam giac abc can tai a                                                           nen goc bah=cah va ab=ac nen tam giac bao=tam giac cao                                                                                                                 nen goc oba=oca suy ra oca=90 do suy ra dpcm                  

a: Xét ΔOBA và ΔOCA có 

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)

hay AC là tiếp tuyến của (O)

b:

Xét (O) có

ΔBDC nội tiếp

BD là đường kính

Do đó: ΔBDC vuông tại C

Xét ΔOBA vuông tại B và ΔDCB vuông tại C có

\(\widehat{BOA}=\widehat{CDB}\)

Do đó: ΔOBA∼ΔDCB

Suy ra: \(\dfrac{OB}{DC}=\dfrac{OA}{BD}\)

hay \(DC\cdot OA=2\cdot R^2\)

10 tháng 1 2022

Mình cảm ơn ạ

 

6 tháng 12 2017

Câu c.

Gọi K là trung điểm của BH

Chỉ ra K là trực tâm của tam giác BMI

Chứng minh MK//EI

Chứng minh M là trung điểm của BE (t.c đường trung bình)

a) Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: AB=AC(cmt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA⊥BC(đpcm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔOBA vuông tại B có BH là đường cao ứng với cạnh huyền OA, ta được: 

\(OH\cdot OA=OB^2\)

mà OB=R(B∈(O))

nên \(OH\cdot OA=R^2\)(đpcm)

b) Xét (O) có 

ΔBCD nội tiếp đường tròn(B,C,D∈(O))

BD là đường kính của (O)

Do đó: ΔBCD vuông tại C(Định lí)

⇒BC⊥CD tại C

Ta có: BC⊥CD(cmt)

BC⊥OA(cmt)

Do đó: OA//CD(Định lí 1 từ vuông góc tới song song)