K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp đường tròn đường kính MO

Tâm là trung điểm của MO

Bán kính là MO/2

b: Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB

góc ABK=1/2*sđ cung AK=90 độ

=>AB vuông góc BK

=>BK//OM

26 tháng 5 2019

Mình không vẽ được hình mong bạn thông cảm 

a, Chắc bạn làm rồi

b, Sử dụng tính chất 2 tiếp tuyến cắt nhau

=>\(\hept{\begin{cases}AP=IP\\IQ=BQ\\MA=MB\end{cases}}\)

Khi đó \(P_{MPQ}=MP+AP+MQ+QB=MA+MB=2a\)(đpcm)

c, Vì H là trực tâm của tam giác MAB

=>\(AH\perp MB\)

MÀ \(MB\perp OB\)

=> \(AH//OB\)

CMTT=>\(BH//AO\)

=> tứ giác AHBO là hình bình hành

=>AH=OB=R

MÀ A cố định 

=> \(H\in\left(A,R\right)\)cố định

Vậy H thuộc đường tròn  tâm A bán kính R cố định

1. cho tam giác ABC nhọn, góc B = 70 độ nội tiếp đường tròn ( 0; 9 cm). Vẽ hai đường cao BM và CN cắt nhau tại H.a. chứng minh tứ giác AMHN , BCMN nội tiếp.b. Tính độ dài cung nhỏ ACc. chứng minh đường thẳng AO vuông góc MN2. từ 1 điểm A nằm ngoài đường tròn ( 0 ; 6 cm) vẽ hai tiếp tuyến AB, AC với đường tròn ( BC thuộc đường tròn tâm O) và cát tuyến AMN của đường tròn tâm O sao cho MN = 6cma....
Đọc tiếp

1. cho tam giác ABC nhọn, góc B = 70 độ nội tiếp đường tròn ( 0; 9 cm). Vẽ hai đường cao BM và CN cắt nhau tại H.

a. chứng minh tứ giác AMHN , BCMN nội tiếp.

b. Tính độ dài cung nhỏ AC

c. chứng minh đường thẳng AO vuông góc MN

2. từ 1 điểm A nằm ngoài đường tròn ( 0 ; 6 cm) vẽ hai tiếp tuyến AB, AC với đường tròn ( BC thuộc đường tròn tâm O) và cát tuyến AMN của đường tròn tâm O sao cho MN = 6cm

a. Chứng minh tứ giác ABOC nội tiếp

b. tính độ dài đoạn thẳng AB biết AO= 10cm

c. Gọi H là trung điểm của đoạn thẳng MN, chứng minh rằng góc AHB = góc AOB

3. từ 1 điểm H nằm ngoài đường tròn tâm O vẽ 2 tiếp tuyến MP, MN ( N, P thuộc đường tròn tâm O) và cát tuyến MAB ( A, B thuộc đường tròn tâm O). Chứng minh tư giác MPON nội tiếp 1 đường

ai giúp mình giải với mình cảm ơn nhiều

0
24 tháng 9 2017

a, Chứng minh được DBOF nội tiếp đường tròn tâm I là trung điểm của DO

b,  O A = O F 2 + A F 2 = 5 R 3 =>  cos D A B ^ = A F A O = 4 5

c, ∆AMO:∆ADB(g.g) =>  D M A M = O B O A

mà M O D ^ = O D B ^ = O D M ^ => DM = OM

=>  D B D M = D B O M = A D A M . Xét vế trái  B D D M - D M A M = A D - D M A M = 1

d,  D B = A B . tan D A B ^ = 8 R 3 . 3 4 = 2 R => O M = A O . tan D A B ^ = 5 R 4

=>  S O M D B = 13 R 2 8

S O M D B ngoài = S O M D B - 1 4 S O , R = R 2 8 13 - 2 π