Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. áp dụng hệ thức lượng ta có:
\(MH^2=AH.BH\Rightarrow BH=\frac{4^2}{2}=8cm\)
\(\Rightarrow\hept{\begin{cases}AB=AH+HB=2+8=10cm\\MA=\sqrt{AH.AB}=\sqrt{20}cm\end{cases}}\)
b. ta có :
\(\frac{1}{MA^2}+\frac{1}{MB^2}\ge\frac{4}{MA^2+MB^2}=\frac{4}{AB^2}=const\)
dấu bằng xảy ra khi \(MA=MB\Rightarrow M\text{ nằm chính giữa cung tròn AB}\)
a+b .
c. c) Xét \(\Delta OSS_1\) có IB là đường trung bình nên suy ra:
\(IB=\frac{1}{2}OS=\frac{1}{2}h\)
Vậy khoảng cách từ I đến AB là \(\frac{1}{2}h\)
Xét \(\Delta OSS_2\) có KA là đường trung bình nên suy ra:
\(AK=\frac{1}{2}OS=\frac{1}{2}h\)
Vậy khoảng cách từ K đến AB là \(\frac{1}{2}h\)
Theo hình vẽ đễ dàng nhận thấy:
\(\Delta HBS_2\text{∼ }\Delta KAS_2\)
\(\rightarrow\frac{HB}{KA}=\frac{BS_2}{AS_2}=\frac{BS}{AB+BS}=\frac{d-a}{2d-a}\)
\(\rightarrow HB=\frac{d-a}{2d-a},KA=\frac{\left(d-a\right)h}{4d-2a}\)
Vậy khoảng cách từ H đến AB là đoạn \(HB=\frac{\left(d-a\right)h}{4d-2a}\)