Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
b: Xét ΔOBA vuông tại B có BH làđường cao
nên OH*OA=OB^2=R^2
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA⊥BC
Hình vẽ:
a, \(\left\{{}\begin{matrix}OB=OC\\AB=AC\end{matrix}\right.\Rightarrow OA\) là đường trung trực của \(BC\)
b, Vì \(OA\) là đường trung trực của \(BC\Rightarrow\left\{{}\begin{matrix}OA\perp BC\\HB=HC\end{matrix}\right.\)
\(\Delta OBA\) vuông tại \(B,BH\perp OA\Rightarrow HA.HO=HB^2=HB.HC\)
c, \(\widehat{ABI}=\dfrac{1}{2}\widehat{AOB}\) (Góc tạo bởi tia tiếp tuyến và dây cung)
Lại có \(\widehat{CBI}=\dfrac{1}{2}\widehat{COI}==\dfrac{1}{2}\widehat{BOI}\)
\(\Rightarrow\widehat{ABI}=\widehat{CBI}\Rightarrow BI\) là phân giác \(\widehat{ABC}\)
Mà \(AI\) là phân giác \(\widehat{BAC}\)
\(\Rightarrow I\) là tâm đường tròn nội tiếp
Câu hỏi của TRUONG LINH ANH - Toán lớp 9 - Học toán với OnlineMath
Em có thể tham khảo tại link bên trên nhé.